/// <summary>
        ///   Solves a linear equation system of the form Ax = b.
        /// </summary>
        /// <param name="value">The b from the equation Ax = b.</param>
        /// <returns>The x from equation Ax = b.</returns>
        public Double[] Solve(Double[] value)
        {
            // Additionally an important property is that if there does not exists a solution
            // when the matrix A is singular but replacing 1/Li with 0 will provide a solution
            // that minimizes the residue |AX -Y|. SVD finds the least squares best compromise
            // solution of the linear equation system. Interestingly SVD can be also used in an
            // over-determined system where the number of equations exceeds that of the parameters.

            // L is a diagonal matrix with non-negative matrix elements having the same
            // dimension as A, Wi ? 0. The diagonal elements of L are the singular values of matrix A.

            //singularity threshold
            Double e = this.Threshold;

            var Y = value;

            // Create L*, which is a diagonal matrix with elements
            //    L*i = 1/Li  if Li = e, else 0,
            // where e is the so-called singularity threshold.

            // In other words, if Li is zero or close to zero (smaller than e),
            // one must replace 1/Li with 0. The value of e depends on the precision
            // of the hardware. This method can be used to solve linear equations
            // systems even if the matrices are singular or close to singular.

            int scols = s.Length;

            var Ls = new Double[scols, scols];
            for (int i = 0; i < s.Length; i++)
            {
                if (System.Math.Abs(s[i]) <= e)
                    Ls[i, i] = 0;
                else Ls[i, i] = 1 / s[i];
            }

            //(V x L*) x Ut x Y
            var VL = v.Multiply(Ls);

            //(V x L* x Ut) x Y
            int urows = u.GetLength(0);
            int vrows = v.GetLength(0);
            var VLU = new Double[vrows, urows];
            for (int i = 0; i < vrows; i++)
            {
                for (int j = 0; j < urows; j++)
                {
                    Double sum = 0;
                    for (int k = 0; k < scols; k++)
                        sum += VL[i, k] * u[j, k];
                    VLU[i, j] = sum;
                }
            }

            //(V x L* x Ut x Y)
            return VLU.Multiply(Y);
        }