Example #1
0
 private static uint QueueRound(uint hash, uint queuedValue)
 {
     unchecked
     {
         return(BitOperations.RotateLeft(hash + queuedValue * Prime3, 17) * Prime4);
     }
 }
Example #2
0
 private static uint Round(uint hash, uint input)
 {
     unchecked
     {
         return(BitOperations.RotateLeft(hash + input * Prime2, 13) * Prime1);
     }
 }
Example #3
0
 private static uint MixState(uint v1, uint v2, uint v3, uint v4)
 {
     unchecked
     {
         return(BitOperations.RotateLeft(v1, 1) + BitOperations.RotateLeft(v2, 7) + BitOperations.RotateLeft(v3, 12) + BitOperations.RotateLeft(v4, 18));
     }
 }
Example #4
0
        // Use this if and only if 'Denial of Service' attacks are not a concern (i.e. never used for free-form user input),
        // or are otherwise mitigated
        internal unsafe int GetNonRandomizedHashCode()
        {
            fixed(char *src = &_firstChar)
            {
                Debug.Assert(src[this.Length] == '\0', "src[this.Length] == '\\0'");
                Debug.Assert(((int)src) % 4 == 0, "Managed string should start at 4 bytes boundary");

                uint hash1 = (5381 << 16) + 5381;
                uint hash2 = hash1;

                uint *ptr    = (uint *)src;
                int   length = this.Length;

                while (length > 2)
                {
                    length -= 4;
                    // Where length is 4n-1 (e.g. 3,7,11,15,19) this additionally consumes the null terminator
                    hash1 = (BitOperations.RotateLeft(hash1, 5) + hash1) ^ ptr[0];
                    hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ ptr[1];
                    ptr  += 2;
                }

                if (length > 0)
                {
                    // Where length is 4n-3 (e.g. 1,5,9,13,17) this additionally consumes the null terminator
                    hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ ptr[0];
                }

                return((int)(hash1 + (hash2 * 1566083941)));
            }
        }
Example #5
0
            //public override void NextBytes(byte[] buffer) => NextBytes((Span<byte>)buffer);
            public override unsafe void NextBytes(byte[] buffer)
            {
                ulong s0 = _s0, s1 = _s1, s2 = _s2, s3 = _s3;

                int pos    = 0;
                int ulongs = buffer.Length / sizeof(ulong) * sizeof(ulong);

                //while (buffer.Length >= sizeof(ulong))
                for (; pos < ulongs; pos += sizeof(ulong))
                {
                    /*Unsafe.WriteUnaligned(
                     *  ref MemoryMarshal.GetReference(buffer),
                     *  BitOperations.RotateLeft(s1 * 5, 7) * 9);*/
                    Unsafe.As <byte, ulong>(ref buffer[pos]) =
                        BitOperations.RotateLeft(s1 * 5, 7) * 9;

                    // Update PRNG state.
                    ulong t = s1 << 17;
                    s2 ^= s0;
                    s3 ^= s1;
                    s1 ^= s2;
                    s0 ^= s3;
                    s2 ^= t;
                    s3  = BitOperations.RotateLeft(s3, 45);

                    //buffer = buffer.Slice(sizeof(ulong));
                }

                //if (!buffer.IsEmpty)
                if (pos < buffer.Length)
                {
                    ulong next           = BitOperations.RotateLeft(s1 * 5, 7) * 9;
                    byte *remainingBytes = (byte *)&next;
                    Debug.Assert(buffer.Length < sizeof(ulong));
                    //for (int i = 0; i < buffer.Length; i++)
                    for (int i = 0; pos < buffer.Length; i++, pos++)
                    {
                        //buffer[i] = remainingBytes[i];
                        buffer[pos] = remainingBytes[i];
                    }

                    // Update PRNG state.
                    ulong t = s1 << 17;
                    s2 ^= s0;
                    s3 ^= s1;
                    s1 ^= s2;
                    s0 ^= s3;
                    s2 ^= t;
                    s3  = BitOperations.RotateLeft(s3, 45);
                }

                _s0 = s0;
                _s1 = s1;
                _s2 = s2;
                _s3 = s3;
            }
Example #6
0
        internal unsafe int GetNonRandomizedHashCodeOrdinalIgnoreCase()
        {
            uint hash1 = (5381 << 16) + 5381;
            uint hash2 = hash1;

            fixed(char *src = &_firstChar)
            {
                Debug.Assert(src[this.Length] == '\0', "src[this.Length] == '\\0'");
                Debug.Assert(((int)src) % 4 == 0, "Managed string should start at 4 bytes boundary");

                uint *ptr    = (uint *)src;
                int   length = this.Length;

                // We "normalize to lowercase" every char by ORing with 0x0020. This casts
                // a very wide net because it will change, e.g., '^' to '~'. But that should
                // be ok because we expect this to be very rare in practice.
                const uint NormalizeToLowercase = 0x0020_0020u; // valid both for big-endian and for little-endian

                while (length > 2)
                {
                    uint p0 = ptr[0];
                    uint p1 = ptr[1];
                    if (!Utf16Utility.AllCharsInUInt32AreAscii(p0 | p1))
                    {
                        goto NotAscii;
                    }

                    length -= 4;
                    // Where length is 4n-1 (e.g. 3,7,11,15,19) this additionally consumes the null terminator
                    hash1 = (BitOperations.RotateLeft(hash1, 5) + hash1) ^ (p0 | NormalizeToLowercase);
                    hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ (p1 | NormalizeToLowercase);
                    ptr  += 2;
                }

                if (length > 0)
                {
                    uint p0 = ptr[0];
                    if (!Utf16Utility.AllCharsInUInt32AreAscii(p0))
                    {
                        goto NotAscii;
                    }

                    // Where length is 4n-3 (e.g. 1,5,9,13,17) this additionally consumes the null terminator
                    hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ (p0 | NormalizeToLowercase);
                }
            }

            return((int)(hash1 + (hash2 * 1566083941)));

NotAscii:
            return(GetNonRandomizedHashCodeOrdinalIgnoreCaseSlow(this));
Example #7
0
        /// <summary>
        /// Called when pos reaches 64.
        /// </summary>
        private void Drain()
        {
            for (int i = 16; i != 80; i++)
            {
                _w[i] = BitOperations.RotateLeft(_w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16], 1);
            }

            uint a = _w[80];
            uint b = _w[81];
            uint c = _w[82];
            uint d = _w[83];
            uint e = _w[84];

            for (int i = 0; i != 20; i++)
            {
                const uint k    = 0x5A827999;
                uint       f    = (b & c) | ((~b) & d);
                uint       temp = BitOperations.RotateLeft(a, 5) + f + e + k + _w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
            }

            for (int i = 20; i != 40; i++)
            {
                uint       f    = b ^ c ^ d;
                const uint k    = 0x6ED9EBA1;
                uint       temp = BitOperations.RotateLeft(a, 5) + f + e + k + _w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
            }

            for (int i = 40; i != 60; i++)
            {
                uint       f    = (b & c) | (b & d) | (c & d);
                const uint k    = 0x8F1BBCDC;
                uint       temp = BitOperations.RotateLeft(a, 5) + f + e + k + _w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
            }

            for (int i = 60; i != 80; i++)
            {
                uint       f    = b ^ c ^ d;
                const uint k    = 0xCA62C1D6;
                uint       temp = BitOperations.RotateLeft(a, 5) + f + e + k + _w[i]; e = d; d = c; c = BitOperations.RotateLeft(b, 30); b = a; a = temp;
            }

            _w[80] += a;
            _w[81] += b;
            _w[82] += c;
            _w[83] += d;
            _w[84] += e;

            _length += 512; // 64 bytes == 512 bits
            _pos     = 0;
        }
            [MethodImpl(MethodImplOptions.AggressiveInlining)] // small-ish hot path used by a handful of "next" methods
            internal uint NextUInt32()
            {
                uint result = BitOperations.RotateLeft(_s1 * 5, 7) * 9;
                uint t      = _s1 << 9;

                _s2 ^= _s0;
                _s3 ^= _s1;
                _s1 ^= _s2;
                _s0 ^= _s3;

                _s2 ^= t;
                _s3  = BitOperations.RotateLeft(_s3, 11);

                return(result);
            }
Example #9
0
            [MethodImpl(MethodImplOptions.AggressiveInlining)] // small-ish hot path used by a handful of "next" methods
            internal ulong NextUInt64()
            {
                ulong result = BitOperations.RotateLeft(_s1 * 5, 7) * 9;
                ulong t      = _s1 << 17;

                _s2 ^= _s0;
                _s3 ^= _s1;
                _s1 ^= _s2;
                _s0 ^= _s3;

                _s2 ^= t;
                _s3  = BitOperations.RotateLeft(_s3, 45);

                return(result);
            }
Example #10
0
            public override unsafe void NextBytes(Span <byte> buffer)
            {
                ulong s0 = _s0, s1 = _s1, s2 = _s2, s3 = _s3;

                while (buffer.Length >= sizeof(ulong))
                {
                    Unsafe.WriteUnaligned(
                        ref MemoryMarshal.GetReference(buffer),
                        BitOperations.RotateLeft(s1 * 5, 7) * 9);

                    // Update PRNG state.
                    ulong t = s1 << 17;
                    s2 ^= s0;
                    s3 ^= s1;
                    s1 ^= s2;
                    s0 ^= s3;
                    s2 ^= t;
                    s3  = BitOperations.RotateLeft(s3, 45);

                    buffer = buffer.Slice(sizeof(ulong));
                }

                if (!buffer.IsEmpty)
                {
                    ulong next           = BitOperations.RotateLeft(s1 * 5, 7) * 9;
                    byte *remainingBytes = (byte *)&next;
                    Debug.Assert(buffer.Length < sizeof(ulong));
                    for (int i = 0; i < buffer.Length; i++)
                    {
                        buffer[i] = remainingBytes[i];
                    }

                    // Update PRNG state.
                    ulong t = s1 << 17;
                    s2 ^= s0;
                    s3 ^= s1;
                    s1 ^= s2;
                    s0 ^= s3;
                    s2 ^= t;
                    s3  = BitOperations.RotateLeft(s3, 45);
                }

                _s0 = s0;
                _s1 = s1;
                _s2 = s2;
                _s3 = s3;
            }
Example #11
0
            static int GetNonRandomizedHashCodeOrdinalIgnoreCaseSlow(string str)
            {
                int length = str.Length;

                char[]? borrowedArr = null;
                // Important: leave an additional space for '\0'
                Span <char> scratch = (uint)length < 64 ?
                                      stackalloc char[64] : (borrowedArr = ArrayPool <char> .Shared.Rent(length + 1));

                int charsWritten = System.Globalization.Ordinal.ToUpperOrdinal(str, scratch);

                Debug.Assert(charsWritten == length);
                scratch[length] = '\0';

                const uint NormalizeToLowercase = 0x0020_0020u;
                uint       hash1 = (5381 << 16) + 5381;
                uint       hash2 = hash1;

                // Duplicate the main loop, can be removed once JIT gets "Loop Unswitching" optimization
                fixed(char *src = scratch)
                {
                    uint *ptr = (uint *)src;

                    while (length > 2)
                    {
                        length -= 4;
                        hash1   = (BitOperations.RotateLeft(hash1, 5) + hash1) ^ (ptr[0] | NormalizeToLowercase);
                        hash2   = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ (ptr[1] | NormalizeToLowercase);
                        ptr    += 2;
                    }

                    if (length > 0)
                    {
                        hash2 = (BitOperations.RotateLeft(hash2, 5) + hash2) ^ (ptr[0] | NormalizeToLowercase);
                    }
                }

                if (borrowedArr != null)
                {
                    ArrayPool <char> .Shared.Return(borrowedArr);
                }
                return((int)(hash1 + (hash2 * 1566083941)));
            }
Example #12
0
        private static void Block(ref uint rp0, ref uint rp1)
        {
            uint p0 = rp0;
            uint p1 = rp1;

            p1 ^= p0;
            p0  = BitOperations.RotateLeft(p0, 20);

            p0 += p1;
            p1  = BitOperations.RotateLeft(p1, 9);

            p1 ^= p0;
            p0  = BitOperations.RotateLeft(p0, 27);

            p0 += p1;
            p1  = BitOperations.RotateLeft(p1, 19);

            rp0 = p0;
            rp1 = p1;
        }
Example #13
0
        private static void Block(ref uint rp0, ref uint rp1)
        {
            // Intrinsified in mono interpreter
            uint p0 = rp0;
            uint p1 = rp1;

            p1 ^= p0;
            p0  = BitOperations.RotateLeft(p0, 20);

            p0 += p1;
            p1  = BitOperations.RotateLeft(p1, 9);

            p1 ^= p0;
            p0  = BitOperations.RotateLeft(p0, 27);

            p0 += p1;
            p1  = BitOperations.RotateLeft(p1, 19);

            rp0 = p0;
            rp1 = p1;
        }
            [MethodImpl(MethodImplOptions.AggressiveInlining)] // small-ish hot path used by a handful of "next" methods
            internal uint NextUInt32()
            {
                uint s0 = _s0, s1 = _s1, s2 = _s2, s3 = _s3;

                uint result = BitOperations.RotateLeft(s1 * 5, 7) * 9;
                uint t      = s1 << 9;

                s2 ^= s0;
                s3 ^= s1;
                s1 ^= s2;
                s0 ^= s3;

                s2 ^= t;
                s3  = BitOperations.RotateLeft(s3, 11);

                _s0 = s0;
                _s1 = s1;
                _s2 = s2;
                _s3 = s3;

                return(result);
            }
Example #15
0
            [MethodImpl(MethodImplOptions.AggressiveInlining)] // small-ish hot path used by a handful of "next" methods
            internal ulong NextUInt64()
            {
                ulong s0 = _s0, s1 = _s1, s2 = _s2, s3 = _s3;

                ulong result = BitOperations.RotateLeft(s1 * 5, 7) * 9;
                ulong t      = s1 << 17;

                s2 ^= s0;
                s3 ^= s1;
                s1 ^= s2;
                s0 ^= s3;

                s2 ^= t;
                s3  = BitOperations.RotateLeft(s3, 45);

                _s0 = s0;
                _s1 = s1;
                _s2 = s2;
                _s3 = s3;

                return(result);
            }
Example #16
0
 static int IBinaryInteger <int> .RotateLeft(int value, int rotateAmount)
 => (int)BitOperations.RotateLeft((uint)value, rotateAmount);
Example #17
0
 static ulong IBinaryInteger <ulong> .RotateLeft(ulong value, int rotateAmount)
 => BitOperations.RotateLeft(value, rotateAmount);
Example #18
0
 /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
 public static long RotateLeft(long value, int rotateAmount) => (long)BitOperations.RotateLeft((ulong)value, rotateAmount);
Example #19
0
 static uint IBinaryInteger <uint> .RotateLeft(uint value, int rotateAmount)
 => BitOperations.RotateLeft(value, rotateAmount);
Example #20
0
 private static uint QueueRound(uint hash, uint queuedValue)
 {
     return(BitOperations.RotateLeft(hash + (queuedValue * _prime3), 17) * _prime4);
 }
Example #21
0
        public static int ComputeHash32(ref byte data, uint count, uint p0, uint p1)
        {
            // Control flow of this method generally flows top-to-bottom, trying to
            // minimize the number of branches taken for large (>= 8 bytes, 4 chars) inputs.
            // If small inputs (< 8 bytes, 4 chars) are given, this jumps to a "small inputs"
            // handler at the end of the method.

            if (count < 8)
            {
                // We can't run the main loop, but we might still have 4 or more bytes available to us.
                // If so, jump to the 4 .. 7 bytes logic immediately after the main loop.

                if (count >= 4)
                {
                    goto Between4And7BytesRemain;
                }
                else
                {
                    goto InputTooSmallToEnterMainLoop;
                }
            }

            // Main loop - read 8 bytes at a time.
            // The block function is unrolled 2x in this loop.

            uint loopCount = count / 8;

            Debug.Assert(loopCount > 0, "Shouldn't reach this code path for small inputs.");

            do
            {
                // Most x86 processors have two dispatch ports for reads, so we can read 2x 32-bit
                // values in parallel. We opt for this instead of a single 64-bit read since the
                // typical use case for Marvin32 is computing String hash codes, and the particular
                // layout of String instances means the starting data is never 8-byte aligned when
                // running in a 64-bit process.

                p0 += Unsafe.ReadUnaligned <uint>(ref data);
                uint nextUInt32 = Unsafe.ReadUnaligned <uint>(ref Unsafe.AddByteOffset(ref data, 4));

                // One block round for each of the 32-bit integers we just read, 2x rounds total.

                Block(ref p0, ref p1);
                p0 += nextUInt32;
                Block(ref p0, ref p1);

                // Bump the data reference pointer and decrement the loop count.

                // Decrementing by 1 every time and comparing against zero allows the JIT to produce
                // better codegen compared to a standard 'for' loop with an incrementing counter.
                // Requires https://github.com/dotnet/coreclr/issues/7566 to be addressed first
                // before we can realize the full benefits of this.

                data = ref Unsafe.AddByteOffset(ref data, 8);
            } while (--loopCount > 0);

            // n.b. We've not been updating the original 'count' parameter, so its actual value is
            // still the original data length. However, we can still rely on its least significant
            // 3 bits to tell us how much data remains (0 .. 7 bytes) after the loop above is
            // completed.

            if ((count & 0b_0100) == 0)
            {
                goto DoFinalPartialRead;
            }

Between4And7BytesRemain:

            // If after finishing the main loop we still have 4 or more leftover bytes, or if we had
            // 4 .. 7 bytes to begin with and couldn't enter the loop in the first place, we need to
            // consume 4 bytes immediately and send them through one round of the block function.

            Debug.Assert(count >= 4, "Only should've gotten here if the original count was >= 4.");

            p0 += Unsafe.ReadUnaligned <uint>(ref data);
            Block(ref p0, ref p1);

DoFinalPartialRead:

            // Finally, we have 0 .. 3 bytes leftover. Since we know the original data length was at
            // least 4 bytes (smaller lengths are handled at the end of this routine), we can safely
            // read the 4 bytes at the end of the buffer without reading past the beginning of the
            // original buffer. This necessarily means the data we're about to read will overlap with
            // some data we've already processed, but we can handle that below.

            Debug.Assert(count >= 4, "Only should've gotten here if the original count was >= 4.");

            // Read the last 4 bytes of the buffer.

            uint partialResult = Unsafe.ReadUnaligned <uint>(ref Unsafe.Add(ref Unsafe.AddByteOffset(ref data, (nuint)count & 7), -4));

            // The 'partialResult' local above contains any data we have yet to read, plus some number
            // of bytes which we've already read from the buffer. An example of this is given below
            // for little-endian architectures. In this table, AA BB CC are the bytes which we still
            // need to consume, and ## are bytes which we want to throw away since we've already
            // consumed them as part of a previous read.
            //
            //                                                    (partialResult contains)   (we want it to contain)
            // count mod 4 = 0 -> [ ## ## ## ## |             ] -> 0x####_####             -> 0x0000_0080
            // count mod 4 = 1 -> [ ## ## ## ## | AA          ] -> 0xAA##_####             -> 0x0000_80AA
            // count mod 4 = 2 -> [ ## ## ## ## | AA BB       ] -> 0xBBAA_####             -> 0x0080_BBAA
            // count mod 4 = 3 -> [ ## ## ## ## | AA BB CC    ] -> 0xCCBB_AA##             -> 0x80CC_BBAA

            count = ~count << 3;

            if (BitConverter.IsLittleEndian)
            {
                partialResult >>= 8;                 // make some room for the 0x80 byte
                partialResult  |= 0x8000_0000u;      // put the 0x80 byte at the beginning
                partialResult >>= (int)count & 0x1F; // shift out all previously consumed bytes
            }
            else
            {
                partialResult <<= 8;                 // make some room for the 0x80 byte
                partialResult  |= 0x80u;             // put the 0x80 byte at the end
                partialResult <<= (int)count & 0x1F; // shift out all previously consumed bytes
            }

DoFinalRoundsAndReturn:

            // Now that we've computed the final partial result, merge it in and run two rounds of
            // the block function to finish out the Marvin algorithm.

            p0 += partialResult;
            Block(ref p0, ref p1);
            Block(ref p0, ref p1);

            return((int)(p1 ^ p0));

InputTooSmallToEnterMainLoop:

            // We had only 0 .. 3 bytes to begin with, so we can't perform any 32-bit reads.
            // This means that we're going to be building up the final result right away and
            // will only ever run two rounds total of the block function. Let's initialize
            // the partial result to "no data".

            if (BitConverter.IsLittleEndian)
            {
                partialResult = 0x80u;
            }
            else
            {
                partialResult = 0x80000000u;
            }

            if ((count & 0b_0001) != 0)
            {
                // If the buffer is 1 or 3 bytes in length, let's read a single byte now
                // and merge it into our partial result. This will result in partialResult
                // having one of the two values below, where AA BB CC are the buffer bytes.
                //
                //                  (little-endian / big-endian)
                // [ AA          ]  -> 0x0000_80AA / 0xAA80_0000
                // [ AA BB CC    ]  -> 0x0000_80CC / 0xCC80_0000

                partialResult = Unsafe.AddByteOffset(ref data, (nuint)count & 2);

                if (BitConverter.IsLittleEndian)
                {
                    partialResult |= 0x8000;
                }
                else
                {
                    partialResult <<= 24;
                    partialResult  |= 0x800000u;
                }
            }

            if ((count & 0b_0010) != 0)
            {
                // If the buffer is 2 or 3 bytes in length, let's read a single ushort now
                // and merge it into the partial result. This will result in partialResult
                // having one of the two values below, where AA BB CC are the buffer bytes.
                //
                //                  (little-endian / big-endian)
                // [ AA BB       ]  -> 0x0080_BBAA / 0xAABB_8000
                // [ AA BB CC    ]  -> 0x80CC_BBAA / 0xAABB_CC80 (carried over from above)

                if (BitConverter.IsLittleEndian)
                {
                    partialResult <<= 16;
                    partialResult  |= (uint)Unsafe.ReadUnaligned <ushort>(ref data);
                }
                else
                {
                    partialResult |= (uint)Unsafe.ReadUnaligned <ushort>(ref data);
                    partialResult  = BitOperations.RotateLeft(partialResult, 16);
                }
            }

            // Everything is consumed! Go perform the final rounds and return.

            goto DoFinalRoundsAndReturn;
        }
Example #22
0
 /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
 public static uint RotateLeft(uint value, int rotateAmount) => BitOperations.RotateLeft(value, rotateAmount);
Example #23
0
 private static uint Round(uint hash, uint input)
 {
     return(BitOperations.RotateLeft(hash + (input * _prime2), 13) * _prime1);
 }
Example #24
0
 /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
 public static ulong RotateLeft(ulong value, int rotateAmount) => BitOperations.RotateLeft(value, rotateAmount);
Example #25
0
 /// <inheritdoc cref="IBinaryInteger{TSelf}.RotateLeft(TSelf, int)" />
 public static int RotateLeft(int value, int rotateAmount) => (int)BitOperations.RotateLeft((uint)value, rotateAmount);
Example #26
0
 static long IBinaryInteger <long> .RotateLeft(long value, int rotateAmount)
 => (long)BitOperations.RotateLeft((ulong)value, rotateAmount);