Example #1
0
 public DisparityCalibration()
 {
     model = new Polynomial2D()
     {
         Coef = new double[, ] {
             { 33.8504792299378, 0.0165929854877602, -8.279223601177E-06 },
             { 0.82796340799605, 1.57301601046165E-05, 0 },
             { -1.30466960028068E-05, 0, 0 }
         }
     };
 }
Example #2
0
        static public Polynomial2D Fit(double[][] xdata, double[] ydata)
        {
            var model = new Polynomial2D();
            var n = xdata.Count();
            var A = new double[n, (Deg1 + 1) * (Deg2 + 1)];
            int dmin = Math.Min(Deg1, Deg2), dmax = Math.Max(Deg1, Deg2);
            var minPoints = (dmin + 1) * dmin / 2 + (dmax - dmin) * (dmin + 1);

            if (n < minPoints)
            {
                throw new Exception();
            }

            for (int t = 0; t < n; t++)
            {
                double x1n = 1, x2n = 1;
                int    k = 0;
                for (int i = 0; i <= Deg2; i++, x2n *= xdata[t][1])
                {
                    x1n = 1;
                    for (int j = 0; j <= Deg1; j++, x1n *= xdata[t][0])
                    {
                        if (i + j <= Math.Max(Deg1, Deg2))
                        {
                            A[t, k] = x1n * x2n;
                        }
                        k++;
                    }
                }
            }

            var x = Matrix.Solve(A, ydata, true);

            for (int i = 0; i < (Deg1 + 1) * (Deg2 + 1); i++)
            {
                model.Coef[i / (Deg2 + 1), i % (Deg2 + 1)] = x[i];
            }
            //Buffer.BlockCopy(x, 0, model.Coef, 0, x.Length);
            for (int i = 0; i < Deg1; i++)
            {
                for (int j = 0; j < Deg2; j++)
                {
                    if (i + j > dmax)
                    {
                        model.Coef[i, j] = 0;
                    }
                }
            }
            model.Coef = model.Coef.Transpose(true);
            return(model);
        }
Example #3
0
        private Polynomial2D Ransac(double[][] xdata, double[] ydata,
                                    double threshold = 1.0, int maxEvaluations = 500, int maxSamplings = 30)
        {
            // We are going to find the best model (which fits
            //  the maximum number of inlier points as possible).
            Polynomial2D bestModel = null;

            int[] bestInliers = null;
            int   maxInliers  = 0;

            // For this we are going to search for random samples
            //  of the original points which contains no outliers.

            int    count = 0;              // Total number of trials performed
            double N     = maxEvaluations; // Estimative of number of trials needed.

            // While the number of trials is less than our estimative,
            //   and we have not surpassed the maximum number of trials
            while (count < N && count < maxEvaluations)
            {
                int[]        idx;
                Polynomial2D model = null;

                // Select at random s datapoints to form a trial model.
                idx = Vector.Sample(ydata.Length).Take(maxSamplings).ToArray();
                double[][] inlierX = xdata.Get(idx);
                double[]   inlierY = ydata.Get(idx);

                model = Polynomial2D.Fit(inlierX, inlierY);

                // Now, evaluate the distances between total points and the model returning the
                //  indices of the points that are inliers (according to a distance threshold t).

                idx = xdata
                      .Where((x, i) => ydata[i] - model.Evaluate(x[0], x[1]) < threshold)
                      .Select((x, i) => i).ToArray();

                // Check if the model was the model which highest number of inliers:
                if (idx.Length > maxInliers)
                {
                    maxInliers  = idx.Length;  // Set the new maximum,
                    bestModel   = model;       // This is the best model found so far,
                    bestInliers = idx;         // Store the indices of the current inliers.
                }

                count++; // Increase the trial counter.
            }

            return(bestModel);
        }
Example #4
0
        public void CalibrateCoefficient(Mat decoded, double d0)
        {
            var imgSize = decoded.Size();
            var P       = new List <double[]>();
            var T       = new List <double>();

            for (int i = 0; i < imgSize.Height; i += 1)
            {
                for (int j = 0; j < imgSize.Width; j += 1)
                {
                    var p = (double)decoded.At <float>(i, j);
                    if (p < 0)
                    {
                        continue;
                    }

                    P.Add(new[] { p, i });
                    T.Add(j + d0);
                }
            }
            model = Ransac(P.ToArray(), T.ToArray());
        }