Example #1
0
        private int GetFrom(WordResult[] pWordItems, int nIndex, WordDictionary dictCore, WordDictionary dictUnknown)
        {
            WordInfo info;
            int[] aPOS = new int[Predefine.MAX_POS_PER_WORD];
            int[] aFreq = new int[Predefine.MAX_POS_PER_WORD];
            int nFreq = 0, j, nRetPos = 0, nWordsIndex = 0;
            bool bSplit = false; //Need to split in Transliteration recognition 
            int i = 1, nPOSCount;
            string sCurWord; //Current word

            nWordsIndex = i + nIndex - 1;
            for (i = 1; i < Predefine.MAX_WORDS_PER_SENTENCE && nWordsIndex < pWordItems.Length; i++)
            {
                if (m_tagType == TAG_TYPE.TT_NORMAL || !dictUnknown.IsExist(pWordItems[nWordsIndex].sWord, 44))
                {
                    m_sWords[i] = pWordItems[nWordsIndex].sWord; //store current word
                    m_nWordPosition[i + 1] = m_nWordPosition[i] + m_sWords[i].Length;
                }
                else
                {
                    if (!bSplit)
                    {
                        m_sWords[i] = pWordItems[nWordsIndex].sWord.Substring(0, 1);
                        //store current word
                        bSplit = true;
                    }
                    else
                    {
                        m_sWords[i] = pWordItems[nWordsIndex].sWord.Substring(1);
                        //store current word
                        bSplit = false;
                    }
                    m_nWordPosition[i + 1] = m_nWordPosition[i] + m_sWords[i].Length;
                }
                //Record the position of current word
                m_nStartPos = m_nWordPosition[i + 1];
                //Move the Start POS to the ending
                if (m_tagType != TAG_TYPE.TT_NORMAL)
                {
                    //Get the POSs from the unknown recognition dictionary
                    sCurWord = m_sWords[i];
                    if (m_tagType == TAG_TYPE.TT_TRANS_PERSON && i > 0 && m_sWords[i - 1] != null &&
                       Utility.charType(m_sWords[i - 1].ToCharArray()[0]) == Predefine.CT_CHINESE)
                    {
                        if (m_sWords[i] == ".")
                            sCurWord = ".";
                        else if (m_sWords[i] == "-")
                            sCurWord = "-";
                    }

                    info = dictUnknown.GetWordInfo(sCurWord);
                    if (info != null)
                    {
                        nPOSCount = info.Count + 1;
                        for (j = 0; j < info.Count; j++)
                        {
                            //Get the POS set of sCurWord in the unknown dictionary
                            m_nTags[i, j] = info.POSs[j];
                            m_dFrequency[i, j] = -Math.Log((double)(1 + info.Frequencies[j])) +
                               Math.Log((double)(m_context.GetFrequency(0, info.POSs[j]) + nPOSCount));
                        }
                    }
                    else
                    {
                        nPOSCount = 1;
                        j = 0;
                    }

                    //Get the POS set of sCurWord in the core dictionary
                    //We ignore the POS in the core dictionary and recognize them as other (0).
                    //We add their frequency to get the possibility as POS 0
                    if (string.Compare(m_sWords[i], "始##始") == 0)
                    {
                        m_nTags[i, j] = 100;
                        m_dFrequency[i, j] = 0;
                        j++;
                    }
                    else if (string.Compare(m_sWords[i], "末##末") == 0)
                    {
                        m_nTags[i, j] = 101;
                        m_dFrequency[i, j] = 0;
                        j++;
                    }
                    else
                    {
                        //dictCore.GetHandle(m_sWords[i], &nCount, aPOS, aFreq);
                        info = dictCore.GetWordInfo(m_sWords[i]);
                        nFreq = 0;
                        if (info != null)
                        {
                            for (int k = 0; k < info.Count; k++)
                            {
                                nFreq += info.Frequencies[k];
                            }
                            if (info.Count > 0)
                            {
                                m_nTags[i, j] = 0;
                                //m_dFrequency[i][j]=(double)(1+nFreq)/(double)(m_context.GetFrequency(0,0)+1);
                                m_dFrequency[i, j] = -Math.Log((double)(1 + nFreq)) + Math.Log((double)(m_context.GetFrequency(0, 0) + nPOSCount));
                                j++;
                            }
                        }
                    }
                }
                else
                //For normal POS tagging
                {
                    j = 0;
                    //Get the POSs from the unknown recognition dictionary
                    if (pWordItems[nWordsIndex].nPOS > 0)
                    {
                        //The word has  is only one POS value
                        //We have record its POS and nFrequncy in the items.
                        m_nTags[i, j] = pWordItems[nWordsIndex].nPOS;
                        m_dFrequency[i, j] = -Math.Log(pWordItems[nWordsIndex].dValue) + Math.Log((double)(m_context.GetFrequency(0, m_nTags[i, j]) + 1));
                        if (m_dFrequency[i, j] < 0)
                            //Not permit the value less than 0
                            m_dFrequency[i, j] = 0;
                        j++;
                    }
                    else
                    {
                        //The word has multiple POSs, we should retrieve the information from Core Dictionary 
                        if (pWordItems[nWordsIndex].nPOS < 0)
                        {
                            //The word has  is only one POS value
                            //We have record its POS and nFrequncy in the items.
                            m_nTags[i, j] = -pWordItems[nWordsIndex].nPOS;
                            m_dFrequency[i, j++] = pWordItems[nWordsIndex].dValue;
                        }
                        //dictCore.GetHandle(m_sWords[i], &nCount, aPOS, aFreq);
                        info = dictCore.GetWordInfo(m_sWords[i]);
                        if (info != null)
                        {
                            nPOSCount = info.Count;
                            for (; j < info.Count; j++)
                            {
                                //Get the POS set of sCurWord in the unknown dictionary
                                m_nTags[i, j] = info.POSs[j];
                                m_dFrequency[i, j] = -Math.Log(1 + info.Frequencies[j]) + Math.Log(m_context.GetFrequency(0, m_nTags[i, j]) + nPOSCount);
                            }
                        }
                    }
                }
                if (j == 0)
                {
                    //We donot know the POS, so we have to guess them according lexical knowledge
                    GuessPOS(i, out j); //Guess the POS of current word
                }
                m_nTags[i, j] = -1; //Set the ending POS 
                if (j == 1 && m_nTags[i, j] != Predefine.CT_SENTENCE_BEGIN)
                //No ambuguity
                {
                    //No ambuguity, so we can break from the loop
                    i++;
                    m_sWords[i] = null;
                    break;
                }
                if (!bSplit)
                    nWordsIndex++;
            }
            if (nWordsIndex == pWordItems.Length)
                nRetPos = -1;
            //Reaching ending

            if (m_nTags[i - 1, 1] != -1)
            //||m_sWords[i][0]==0
            {
                //Set end for words like "张/华/平"
                if (m_tagType != TAG_TYPE.TT_NORMAL)
                    m_nTags[i, 0] = 101;
                else
                    m_nTags[i, 0] = 1;

                m_dFrequency[i, 0] = 0;
                m_sWords[i] = null; //Set virtual ending
                m_nTags[i++, 1] = -1;
            }
            m_nCurLength = i; //The current word count
            if (nRetPos != -1)
                return nWordsIndex + 1;
            //Next start position
            return -1; //Reaching ending
        }
Example #2
0
        //====================================================================
        // Func Name  : GenerateWordNet
        // Description: Generate the segmentation word net according
        //              the original sentence
        // Parameters : sSentence: the sentence
        //              dictCore : core dictionary
        //              bOriginalFreq=false: output original frequency
        // Returns    : bool
        //====================================================================
        public static RowFirstDynamicArray<ChainContent> GenerateWordNet(List<AtomNode> atomSegment, WordDictionary coreDict)
        {
            string sWord = "", sMaxMatchWord;
             int nPOSRet, nPOS, nTotalFreq;
             double dValue = 0;

             RowFirstDynamicArray<ChainContent> m_segGraph = new RowFirstDynamicArray<ChainContent>();
             m_segGraph.SetEmpty();

             // ��ԭ�Ӳ��ִ���m_segGraph
             for (int i = 0; i < atomSegment.Count; i++)//Init the cost array
             {
            if (atomSegment[i].nPOS == Predefine.CT_CHINESE)
               m_segGraph.SetElement(i, i + 1, new ChainContent(0, 0, atomSegment[i].sWord));
            else
            {
               sWord = atomSegment[i].sWord;//init the word
               dValue = Predefine.MAX_FREQUENCE;
               switch (atomSegment[i].nPOS)
               {
                  case Predefine.CT_INDEX:
                  case Predefine.CT_NUM:
                     nPOS = -27904;//'m'*256
                     sWord = "δ##��";
                     dValue = 0;
                     break;
                  case Predefine.CT_DELIMITER:
                     nPOS = 30464;//'w'*256;
                     break;
                  case Predefine.CT_LETTER:
                     nPOS = -28280; // -'n' * 256 - 'x';
                     dValue = 0;
                     sWord = "δ##��";
                     break;
                  case Predefine.CT_SINGLE://12021-2129-3121
                     if (Regex.IsMatch(atomSegment[i].sWord, @"^(-?\d+)(\.\d+)?$"))����//ƥ�両����
                     {
                        nPOS = -27904;//'m'*256
                        sWord = "δ##��";
                     }
                     else
                     {
                        nPOS = -28280; // -'n' * 256 - 'x'
                        sWord = "δ##��";
                     }
                     dValue = 0;
                     break;
                  default:
                     nPOS = atomSegment[i].nPOS;//'?'*256;
                     break;
               }
               m_segGraph.SetElement(i, i + 1, new ChainContent(dValue, nPOS, sWord));//init the link with minimum
            }
             }

             // �����п��ܵ���ʴ���m_segGraph
             for (int i = 0; i < atomSegment.Count; i++)//All the word
             {
            sWord = atomSegment[i].sWord;//Get the current atom
            int j = i + 1;

            while (j < atomSegment.Count && coreDict.GetMaxMatch(sWord, out sMaxMatchWord, out nPOSRet))
            {
               if (sMaxMatchWord == sWord)  // ��������Ҫ�ҵĴ�
               {
                  WordInfo info = coreDict.GetWordInfo(sWord); // �ôʿ��ܾ��ж��ִ���

                  // ����ôʵ����д�Ƶ֮��
                  nTotalFreq = 0;
                  for (int k = 0; k < info.Count; k++)
                     nTotalFreq += info.Frequencies[k];

                  // ���Ƴ���ijЩ�����
                  if (sWord.Length == 2 && (sWord.StartsWith("��") || sWord.StartsWith("��")) && i >= 1 &&
                     (Utility.IsAllNum(atomSegment[i - 1].sWord) ||
                     Utility.IsAllChineseNum(atomSegment[i - 1].sWord)))
                  {
                     //1���ڡ�1999��ĩ
                     if ("ĩ���е�ǰ���".IndexOf(sWord.Substring(1)) >= 0)
                        break;
                  }

                  // ����ô�ֻ��һ�����ԣ���洢��������Լ�¼Ϊ 0
                  if (info.Count == 1)
                     m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, info.POSs[0], sWord));
                  else
                     m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, 0, sWord));
               }

               sWord += atomSegment[j++].sWord;
            }
             }
             return m_segGraph;
        }
      //====================================================================
      // Func Name  : GenerateWordNet
      // Description: Generate the segmentation word net according 
      //              the original sentence
      // Parameters : sSentence: the sentence
      //              dictCore : core dictionary
      //              bOriginalFreq=false: output original frequency
      // Returns    : bool
      //====================================================================
      public static RowFirstDynamicArray<ChainContent> GenerateWordNet(List<AtomNode> atomSegment, WordDictionary coreDict)
      {
         string sWord = "", sMaxMatchWord;
         int nPOSRet, nPOS, nTotalFreq;
         double dValue = 0;

         RowFirstDynamicArray<ChainContent> m_segGraph = new RowFirstDynamicArray<ChainContent>();
         m_segGraph.SetEmpty();

         // 将原子部分存入m_segGraph
         for (int i = 0; i < atomSegment.Count; i++)//Init the cost array
         {
            if (atomSegment[i].nPOS == Predefine.CT_CHINESE)
               m_segGraph.SetElement(i, i + 1, new ChainContent(0, 0, atomSegment[i].sWord));
            else
            {
               sWord = atomSegment[i].sWord;//init the word 
               dValue = Predefine.MAX_FREQUENCE;
               switch (atomSegment[i].nPOS)
               {
                  case Predefine.CT_INDEX:
                  case Predefine.CT_NUM:
                     nPOS = -27904;//'m'*256
                     sWord = "未##数";
                     dValue = 0;
                     break;
                  case Predefine.CT_DELIMITER:
                     nPOS = 30464;//'w'*256;
                     break;
                  case Predefine.CT_LETTER:
                     nPOS = -28280; // -'n' * 256 - 'x';
                     dValue = 0;
                     sWord = "未##串";
                     break;
                  case Predefine.CT_SINGLE://12021-2129-3121
                     if (Regex.IsMatch(atomSegment[i].sWord, @"^(-?\d+)(\.\d+)?$"))  //匹配浮点数
                     {
                        nPOS = -27904;//'m'*256
                        sWord = "未##数";
                     }
                     else
                     {
                        nPOS = -28280; // -'n' * 256 - 'x'
                        sWord = "未##串";
                     }
                     dValue = 0;
                     break;
                  default:
                     nPOS = atomSegment[i].nPOS;//'?'*256;
                     break;
               }
               m_segGraph.SetElement(i, i + 1, new ChainContent(dValue, nPOS, sWord));//init the link with minimum
            }
         }

         // 将所有可能的组词存入m_segGraph
         for (int i = 0; i < atomSegment.Count; i++)//All the word
         {
            sWord = atomSegment[i].sWord;//Get the current atom
            int j = i + 1;

            while (j < atomSegment.Count && coreDict.GetMaxMatch(sWord, out sMaxMatchWord, out nPOSRet))
            {
               if (sMaxMatchWord == sWord)  // 就是我们要找的词
               {
                  WordInfo info = coreDict.GetWordInfo(sWord); // 该词可能就有多种词性

                  // 计算该词的所有词频之和
                  nTotalFreq = 0;
                  for (int k = 0; k < info.Count; k++)
                     nTotalFreq += info.Frequencies[k];

                  // 限制出现某些特殊词
                  if (sWord.Length == 2 && (sWord.StartsWith("年") || sWord.StartsWith("月")) && i >= 1 &&
                     (Utility.IsAllNum(atomSegment[i - 1].sWord) ||
                     Utility.IsAllChineseNum(atomSegment[i - 1].sWord)))
                  {
                     //1年内、1999年末
                     if ("末内中底前间初".IndexOf(sWord.Substring(1)) >= 0)
                        break;
                  }

                  // 如果该词只有一个词性,则存储,否则词性记录为 0
                  if (info.Count == 1)
                     m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, info.POSs[0], sWord));
                  else
                     m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, 0, sWord));
               }

               sWord += atomSegment[j++].sWord;
            }
         }
         return m_segGraph;
      }
Example #4
0
        //====================================================================
        // Func Name  : GenerateWordNet
        // Description: Generate the segmentation word net according
        //              the original sentence
        // Parameters : sSentence: the sentence
        //              dictCore : core dictionary
        //              bOriginalFreq=false: output original frequency
        // Returns    : bool
        //====================================================================
        public static RowFirstDynamicArray <ChainContent> GenerateWordNet(List <AtomNode> atomSegment, WordDictionary coreDict)
        {
            string sWord = "", sMaxMatchWord;
            int    nPOSRet, nPOS, nTotalFreq;
            double dValue = 0;

            RowFirstDynamicArray <ChainContent> m_segGraph = new RowFirstDynamicArray <ChainContent>();

            m_segGraph.SetEmpty();

            // 将原子部分存入m_segGraph
            for (int i = 0; i < atomSegment.Count; i++)//Init the cost array
            {
                if (atomSegment[i].nPOS == Predefine.CT_CHINESE)
                {
                    m_segGraph.SetElement(i, i + 1, new ChainContent(0, 0, atomSegment[i].sWord));
                }
                else
                {
                    sWord  = atomSegment[i].sWord;//init the word
                    dValue = Predefine.MAX_FREQUENCE;
                    switch (atomSegment[i].nPOS)
                    {
                    case Predefine.CT_INDEX:
                    case Predefine.CT_NUM:
                        nPOS   = -27904;//'m'*256
                        sWord  = "未##数";
                        dValue = 0;
                        break;

                    case Predefine.CT_DELIMITER:
                        nPOS = 30464;//'w'*256;
                        break;

                    case Predefine.CT_LETTER:
                        nPOS   = -28280; // -'n' * 256 - 'x';
                        dValue = 0;
                        sWord  = "未##串";
                        break;

                    case Predefine.CT_SINGLE://12021-2129-3121
                        if (Regex.IsMatch(atomSegment[i].sWord, @"^(-?\d+)(\.\d+)?$"))
                        {
                                                //匹配浮点数
                            {
                                nPOS  = -27904; //'m'*256
                                sWord = "未##数";
                            }
                        }
                        else
                        {
                            nPOS  = -28280; // -'n' * 256 - 'x'
                            sWord = "未##串";
                        }
                        dValue = 0;
                        break;

                    default:
                        nPOS = atomSegment[i].nPOS;//'?'*256;
                        break;
                    }
                    m_segGraph.SetElement(i, i + 1, new ChainContent(dValue, nPOS, sWord));//init the link with minimum
                }
            }

            // 将所有可能的组词存入m_segGraph
            for (int i = 0; i < atomSegment.Count; i++) //All the word
            {
                sWord = atomSegment[i].sWord;           //Get the current atom
                int j = i + 1;

                while (j < atomSegment.Count && coreDict.GetMaxMatch(sWord, out sMaxMatchWord, out nPOSRet))
                {
                    if (sMaxMatchWord == sWord)                      // 就是我们要找的词
                    {
                        WordInfo info = coreDict.GetWordInfo(sWord); // 该词可能就有多种词性

                        // 计算该词的所有词频之和
                        nTotalFreq = 0;
                        for (int k = 0; k < info.Count; k++)
                        {
                            nTotalFreq += info.Frequencies[k];
                        }

                        // 限制出现某些特殊词
                        if (sWord.Length == 2 && (sWord.StartsWith("年") || sWord.StartsWith("月")) && i >= 1 &&
                            (Utility.IsAllNum(atomSegment[i - 1].sWord) ||
                             Utility.IsAllChineseNum(atomSegment[i - 1].sWord)))
                        {
                            //1年内、1999年末
                            if ("末内中底前间初".IndexOf(sWord.Substring(1)) >= 0)
                            {
                                break;
                            }
                        }

                        // 如果该词只有一个词性,则存储,否则词性记录为 0
                        if (info.Count == 1)
                        {
                            m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, info.POSs[0], sWord));
                        }
                        else
                        {
                            m_segGraph.SetElement(i, j, new ChainContent(nTotalFreq, 0, sWord));
                        }
                    }

                    sWord += atomSegment[j++].sWord;
                }
            }
            return(m_segGraph);
        }
Example #5
0
        private int GetFrom(WordResult[] pWordItems, int nIndex, WordDictionary dictCore, WordDictionary dictUnknown)
        {
            WordInfo info;

            int[]  aPOS = new int[Predefine.MAX_POS_PER_WORD];
            int[]  aFreq = new int[Predefine.MAX_POS_PER_WORD];
            int    nFreq = 0, j, nRetPos = 0, nWordsIndex = 0;
            bool   bSplit = false; //Need to split in Transliteration recognition
            int    i = 1, nPOSCount;
            string sCurWord;       //Current word

            nWordsIndex = i + nIndex - 1;
            for (i = 1; i < Predefine.MAX_WORDS_PER_SENTENCE && nWordsIndex < pWordItems.Length; i++)
            {
                if (m_tagType == TAG_TYPE.TT_NORMAL || !dictUnknown.IsExist(pWordItems[nWordsIndex].sWord, 44))
                {
                    m_sWords[i]            = pWordItems[nWordsIndex].sWord; //store current word
                    m_nWordPosition[i + 1] = m_nWordPosition[i] + m_sWords[i].Length;
                }
                else
                {
                    if (!bSplit)
                    {
                        m_sWords[i] = pWordItems[nWordsIndex].sWord.Substring(0, 1);
                        //store current word
                        bSplit = true;
                    }
                    else
                    {
                        m_sWords[i] = pWordItems[nWordsIndex].sWord.Substring(1);
                        //store current word
                        bSplit = false;
                    }
                    m_nWordPosition[i + 1] = m_nWordPosition[i] + m_sWords[i].Length;
                }
                //Record the position of current word
                m_nStartPos = m_nWordPosition[i + 1];
                //Move the Start POS to the ending
                if (m_tagType != TAG_TYPE.TT_NORMAL)
                {
                    //Get the POSs from the unknown recognition dictionary
                    sCurWord = m_sWords[i];
                    if (m_tagType == TAG_TYPE.TT_TRANS_PERSON && i > 0 && m_sWords[i - 1] != null &&
                        Utility.charType(m_sWords[i - 1].ToCharArray()[0]) == Predefine.CT_CHINESE)
                    {
                        if (m_sWords[i] == ".")
                        {
                            sCurWord = ".";
                        }
                        else if (m_sWords[i] == "-")
                        {
                            sCurWord = "-";
                        }
                    }

                    info = dictUnknown.GetWordInfo(sCurWord);
                    if (info != null)
                    {
                        nPOSCount = info.Count + 1;
                        for (j = 0; j < info.Count; j++)
                        {
                            //Get the POS set of sCurWord in the unknown dictionary
                            m_nTags[i, j]      = info.POSs[j];
                            m_dFrequency[i, j] = -Math.Log((double)(1 + info.Frequencies[j])) +
                                                 Math.Log((double)(m_context.GetFrequency(0, info.POSs[j]) + nPOSCount));
                        }
                    }
                    else
                    {
                        nPOSCount = 1;
                        j         = 0;
                    }

                    //Get the POS set of sCurWord in the core dictionary
                    //We ignore the POS in the core dictionary and recognize them as other (0).
                    //We add their frequency to get the possibility as POS 0
                    if (string.Compare(m_sWords[i], "始##始") == 0)
                    {
                        m_nTags[i, j]      = 100;
                        m_dFrequency[i, j] = 0;
                        j++;
                    }
                    else if (string.Compare(m_sWords[i], "末##末") == 0)
                    {
                        m_nTags[i, j]      = 101;
                        m_dFrequency[i, j] = 0;
                        j++;
                    }
                    else
                    {
                        //dictCore.GetHandle(m_sWords[i], &nCount, aPOS, aFreq);
                        info  = dictCore.GetWordInfo(m_sWords[i]);
                        nFreq = 0;
                        if (info != null)
                        {
                            for (int k = 0; k < info.Count; k++)
                            {
                                nFreq += info.Frequencies[k];
                            }
                            if (info.Count > 0)
                            {
                                m_nTags[i, j] = 0;
                                //m_dFrequency[i][j]=(double)(1+nFreq)/(double)(m_context.GetFrequency(0,0)+1);
                                m_dFrequency[i, j] = -Math.Log((double)(1 + nFreq)) + Math.Log((double)(m_context.GetFrequency(0, 0) + nPOSCount));
                                j++;
                            }
                        }
                    }
                }
                else
                //For normal POS tagging
                {
                    j = 0;
                    //Get the POSs from the unknown recognition dictionary
                    if (pWordItems[nWordsIndex].nPOS > 0)
                    {
                        //The word has  is only one POS value
                        //We have record its POS and nFrequncy in the items.
                        m_nTags[i, j]      = pWordItems[nWordsIndex].nPOS;
                        m_dFrequency[i, j] = -Math.Log(pWordItems[nWordsIndex].dValue) + Math.Log((double)(m_context.GetFrequency(0, m_nTags[i, j]) + 1));
                        if (m_dFrequency[i, j] < 0)
                        {
                            //Not permit the value less than 0
                            m_dFrequency[i, j] = 0;
                        }
                        j++;
                    }
                    else
                    {
                        //The word has multiple POSs, we should retrieve the information from Core Dictionary
                        if (pWordItems[nWordsIndex].nPOS < 0)
                        {
                            //The word has  is only one POS value
                            //We have record its POS and nFrequncy in the items.
                            m_nTags[i, j]        = -pWordItems[nWordsIndex].nPOS;
                            m_dFrequency[i, j++] = pWordItems[nWordsIndex].dValue;
                        }
                        //dictCore.GetHandle(m_sWords[i], &nCount, aPOS, aFreq);
                        info = dictCore.GetWordInfo(m_sWords[i]);
                        if (info != null)
                        {
                            nPOSCount = info.Count;
                            for (; j < info.Count; j++)
                            {
                                //Get the POS set of sCurWord in the unknown dictionary
                                m_nTags[i, j]      = info.POSs[j];
                                m_dFrequency[i, j] = -Math.Log(1 + info.Frequencies[j]) + Math.Log(m_context.GetFrequency(0, m_nTags[i, j]) + nPOSCount);
                            }
                        }
                    }
                }
                if (j == 0)
                {
                    //We donot know the POS, so we have to guess them according lexical knowledge
                    GuessPOS(i, out j); //Guess the POS of current word
                }
                m_nTags[i, j] = -1;     //Set the ending POS
                if (j == 1 && m_nTags[i, j] != Predefine.CT_SENTENCE_BEGIN)
                //No ambuguity
                {
                    //No ambuguity, so we can break from the loop
                    i++;
                    m_sWords[i] = null;
                    break;
                }
                if (!bSplit)
                {
                    nWordsIndex++;
                }
            }
            if (nWordsIndex == pWordItems.Length)
            {
                nRetPos = -1;
            }
            //Reaching ending

            if (m_nTags[i - 1, 1] != -1)
            //||m_sWords[i][0]==0
            {
                //Set end for words like "张/华/平"
                if (m_tagType != TAG_TYPE.TT_NORMAL)
                {
                    m_nTags[i, 0] = 101;
                }
                else
                {
                    m_nTags[i, 0] = 1;
                }

                m_dFrequency[i, 0] = 0;
                m_sWords[i]        = null; //Set virtual ending
                m_nTags[i++, 1]    = -1;
            }
            m_nCurLength = i; //The current word count
            if (nRetPos != -1)
            {
                return(nWordsIndex + 1);
            }
            //Next start position
            return(-1); //Reaching ending
        }