public InstructionInfo(WopEx.Instruction Inst, BigInteger Value, BigInteger Value2, BigInteger Value3)
 {
     this.Inst = Inst;
     this.Value = Value;
     this.Value2 = Value2;
     this.Value3 = Value3;
 }
        public override MazeErrorCode onReceiveData(byte[] Data, ref byte[] ResponseData)
        {
            ResponseData = new byte[0];
            switch (base.Step)
            {
                case 1:
                {
                    if (Data.Length != 32)
                    {
                        SysLogger.Log("[MazeHandShake][Server] Receive Length missmatch", SysLogType.Debug);
                        return MazeErrorCode.Error;
                    }

                    wopEx = base.GetWopEncryption();
                    wopEx.Decrypt(Data, 0, Data.Length);

                    BigInteger server_prime = new BigInteger(Data);
                    if (server_prime.isProbablePrime())
                    {
                        //verify the prime from the server
                        BigInteger server_Prime_test = BigInteger.genPseudoPrime(256, 50, new Random(BitConverter.ToInt32(wopEx.Key, 0)));

                        if (server_prime != server_Prime_test)
                        {
                            //Attacker detected ?
                            SysLogger.Log("[MazeHandShake][Server] Man-In-The-Middle detected", SysLogType.Debug);
                            return MazeErrorCode.Error;
                        }

                        //successful
                        //generate another prime and send it back
                        BigInteger client_Prime = BigInteger.genPseudoPrime(256, 50, new Random(server_prime.IntValue()));

                        byte[] primeData = client_Prime.getBytes();
                        wopEx.Encrypt(primeData, 0, primeData.Length);
                        ResponseData = primeData;

                        BigInteger key = base.ModKey(server_prime, client_Prime);
                        //apply key to encryption
                        ApplyKey(wopEx, key);

                        base.FinalKey = wopEx.Key;
                        base.FinalSalt = wopEx.Salt;

                        Step++;
                        return MazeErrorCode.Finished;
                    }
                    else
                    {
                        //connection failed, using old keys ?
                        SysLogger.Log("[MazeHandShake][Server] Invalid received data", SysLogType.Debug);
                        return MazeErrorCode.Error;
                    }
                }
            }

            return MazeErrorCode.Success;
        }
        //***********************************************************************
        // Generates a positive BigInteger that is probably prime.
        //***********************************************************************

        public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
        {
            BigInteger result = new BigInteger();
            bool done = false;

            while (!done)
            {
                result.genRandomBits(bits, rand);
                result.data[0] |= 0x01;		// make it odd

                // prime test
                done = result.isProbablePrime(confidence);
            }
            return result;
        }
        public override MazeErrorCode onReceiveData(byte[] Data, ref byte[] ResponseData)
        {
            ResponseData = new byte[0];

            if (LastErrorCode != MazeErrorCode.Success)
            {
                //don't continue if the client/server messed something up
                return LastErrorCode;
            }

            switch (base.Step)
            {
                case 1:
                {
                    //step 2
                    if (Data.Length != Mazing.ByteCode.Length)
                    {
                        SysLogger.Log("[MazeHandShake][Server] ByteCode Length Missmatch", SysLogType.Debug);
                        return MazeErrorCode.WrongByteCode;
                    }

                    for (int i = 0; i < Mazing.ByteCode.Length; i++)
                    {
                        if (Mazing.ByteCode[i] != Data[i])
                        {
                            SysLogger.Log("[MazeHandShake][Server] WrongByteCode from client", SysLogType.Debug);
                            return MazeErrorCode.WrongByteCode;
                        }
                    }
                    Step++;
                    break;
                }
                case 2:
                {
                    if (onFindKeyInDatabase == null) //programmer error
                    {
                        SysLogger.Log("[MazeHandShake][Server] onFindKeyInDatabase is null", SysLogType.Debug);
                        ResponseData = GetFailResponseData(); //not encrypted, client knows this will fail
                        return MazeErrorCode.Error;
                    }

                    string EncHashedMsg = BitConverter.ToString(SHA512Managed.Create().ComputeHash(Data, 0, Data.Length)).Replace("-", "");
                    byte[] _key = new byte[0];
                    byte[] _salt = new byte[0];
                    byte[] _publicKey = new byte[0];
                    string _userName = "";

                    if (onFindKeyInDatabase(EncHashedMsg, ref _key, ref _salt, ref _publicKey, ref _userName))
                    {
                        this.PublicKeyData = TrimArray(_publicKey, Mazing.MAX_KEY_SIZE);
                        this.wopEx = base.GetWopEncryption(_key, _salt);

                        base.FinalKey = _key;
                        base.FinalSalt = _salt;

                        //let's try to decrypt the data, should go successful
                        wopEx.Decrypt(Data, 0, Data.Length);

                        if (Data.Length != _publicKey.Length)
                        {
                            SysLogger.Log("[MazeHandShake][Server] Public key length missmatch", SysLogType.Debug);
                            //key size not the same... strange
                            ResponseData = GetFailResponseData();
                            return MazeErrorCode.Error;
                        }

                        for (int i = 0; i < _publicKey.Length; i++)
                        {
                            if (Data[i] != _publicKey[i])
                            {
                                SysLogger.Log("[MazeHandShake][Server] Public key missmatch", SysLogType.Debug);
                                //public key did not match... strange
                                ResponseData = GetFailResponseData();
                                return MazeErrorCode.Error;
                            }
                        }

                        //encryption / public key went successful for now
                        this.server_Prime = BigInteger.genPseudoPrime(256, 50, new Random(BitConverter.ToInt32(_key, 0)));
                        byte[] primeData = server_Prime.getBytes();
                        wopEx.Encrypt(primeData, 0, primeData.Length);
                        ResponseData = primeData;

                        this.Username = _userName;

                        Step++;
                    }
                    else
                    {
                        SysLogger.Log("[MazeHandShake][Server] No user key found in database", SysLogType.Debug);
                        ResponseData = GetFailResponseData();
                        return MazeErrorCode.UserKeyNotFound;
                    }
                    break;
                }
                case 3:
                {
                    //response back from client with his prime number
                    wopEx.Decrypt(Data, 0, Data.Length);

                    this.client_Prime = new BigInteger(Data);
                    if (this.client_Prime.isProbablePrime())
                    {
                        //verify the prime from the client
                        BigInteger client_Prime_test = BigInteger.genPseudoPrime(256, 50, new Random(this.server_Prime.IntValue()));

                        if (this.client_Prime != client_Prime_test)
                        {
                            //Attacker detected ?
                            SysLogger.Log("[MazeHandShake][Server] Man-In-The-Middle detected", SysLogType.Debug);
                            return MazeErrorCode.Error;
                        }

                        BigInteger key = base.ModKey(server_Prime, client_Prime);
                        //apply key to encryption
                        ApplyKey(wopEx, key);
                        return MazeErrorCode.Finished;
                    }
                    else
                    {
                        SysLogger.Log("[MazeHandShake][Server] Invalid response", SysLogType.Debug);
                        return MazeErrorCode.Error;
                    }
                }
            }
            return MazeErrorCode.Success;
        }
        /// <summary>
        /// Patches the key by removing the 255 in the beginning of the key
        /// </summary>
        /// <param name="key"></param>
        private void PatchKey(ref BigInteger key)
        {
            byte[] _key = key.getBytes();
            int count = 0;
            for (int i = 0; i < _key.Length; i++, count++)
            {
                if (_key[i] != 255)
                    break;
            }

            if (count > 0)
            {
                byte[] tempKey = new byte[count];
                new FastRandom(PrivateSalt.IntValue()).NextBytes(tempKey);
                Array.Copy(tempKey, _key, tempKey.Length);
                key = new BigInteger(_key);
            }
        }
 protected BigInteger ModKey(BigInteger Key1, BigInteger Key2)
 {
     BigInteger orgKey1 = Key1;
     Key1 += Key2;
     Key1 = equK(Key2, orgKey1, Key1.IntValue());
     return Key1 + Key2;
 }
 internal void ApplyKey(WopEx wopEx, BigInteger prime)
 {
     PatchKey(ref prime);
     byte[] primeKey = prime.getBytes();
     ApplyKey(wopEx, primeKey);
 }
        public BigInteger PrivateKeyToSalt(byte[] PrivateData)
        {
            BigInteger bigInt = new BigInteger();

            int seed = 0x0FFFFAAA;
            for(int i = 0; i < (PrivateData.Length / 4) - 1; i++)
            {
                seed += BitConverter.ToInt32(PrivateData, i * 4);
            }

            bigInt.genRandomBits(128, new Random(seed));

            BigInteger temp = seed;
            for (int i = 0; i < PrivateData.Length / 8; i++)
            {
                if ((i * 8) + 8 > PrivateData.Length)
                    break;

                bigInt += temp >> 8;
                temp += equK(bigInt, temp + BitConverter.ToUInt64(PrivateData, i * 8), seed);
                bigInt += temp;
            }

            return bigInt;
        }
        //***********************************************************************
        // Overloading of addition operator
        //***********************************************************************

        public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

            long carry = 0;
            for (int i = 0; i < result.dataLength; i++)
            {
                long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
                carry = sum >> 32;
                result.data[i] = (uint)(sum & 0xFFFFFFFF);
            }

            if (carry != 0 && result.dataLength < maxLength)
            {
                result.data[result.dataLength] = (uint)(carry);
                result.dataLength++;
            }

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;


            // overflow check
            int lastPos = maxLength - 1;
            if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
        //***********************************************************************
        // Constructor (Default value provided by a string of digits of the
        //              specified base)
        //
        // Example (base 10)
        // -----------------
        // To initialize "a" with the default value of 1234 in base 10
        //      BigInteger a = new BigInteger("1234", 10)
        //
        // To initialize "a" with the default value of -1234
        //      BigInteger a = new BigInteger("-1234", 10)
        //
        // Example (base 16)
        // -----------------
        // To initialize "a" with the default value of 0x1D4F in base 16
        //      BigInteger a = new BigInteger("1D4F", 16)
        //
        // To initialize "a" with the default value of -0x1D4F
        //      BigInteger a = new BigInteger("-1D4F", 16)
        //
        // Note that string values are specified in the <sign><magnitude>
        // format.
        //
        //***********************************************************************

        public BigInteger(string value, int radix)
        {
            BigInteger multiplier = new BigInteger(1);
            BigInteger result = new BigInteger();
            value = (value.ToUpper()).Trim();
            int limit = 0;

            if (value[0] == '-')
                limit = 1;

            for (int i = value.Length - 1; i >= limit; i--)
            {
                int posVal = (int)value[i];

                if (posVal >= '0' && posVal <= '9')
                    posVal -= '0';
                else if (posVal >= 'A' && posVal <= 'Z')
                    posVal = (posVal - 'A') + 10;
                else
                    posVal = 9999999;       // arbitrary large


                if (posVal >= radix)
                    throw (new ArithmeticException("Invalid string in constructor."));
                else
                {
                    if (value[0] == '-')
                        posVal = -posVal;

                    result = result + (multiplier * posVal);

                    if ((i - 1) >= limit)
                        multiplier = multiplier * radix;
                }
            }

            if (value[0] == '-')     // negative values
            {
                if ((result.data[maxLength - 1] & 0x80000000) == 0)
                    throw (new ArithmeticException("Negative underflow in constructor."));
            }
            else    // positive values
            {
                if ((result.data[maxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive overflow in constructor."));
            }

            data = new uint[maxLength];
            for (int i = 0; i < result.dataLength; i++)
                data[i] = result.data[i];

            dataLength = result.dataLength;
        }
        //***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        //
        // k must be odd.  i.e LSB == 1
        //***********************************************************************

        private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                        BigInteger k, BigInteger n,
                                                        BigInteger constant, int s)
        {
            BigInteger[] result = new BigInteger[3];

            if ((k.data[0] & 0x00000001) == 0)
                throw (new ArgumentException("Argument k must be odd."));

            int numbits = k.bitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

            BigInteger v = 2 % n, Q_k = 1 % n,
                       v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
            {
                //Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001)        // last bit
                        break;

                    if ((k.data[i] & mask) != 0)             // bit is set
                    {
                        // index doubling with addition

                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                            flag = false;
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                        Q_k = (Q_k * Q) % n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag)
                        {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                    }

                    mask >>= 1;
                }
                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
                flag = false;
            else
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

            Q_k = (Q_k * Q) % n;


            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag)
                {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }
        //***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        //
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        //
        // To obtain V(2n), we use the identity
        //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        //      V(2n+1) = V((n+1) + n)
        // and use the identity
        //      V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        //                   = V(n+1) * V(n) - Q^n * V(1)
        //                   = V(n+1) * V(n) - Q^n * P
        //
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        //
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        //
        // Where U(0) = 0 % n, U(1) = 1 % n
        //       V(0) = 2 % n, V(1) = P % n
        //***********************************************************************

        public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
                                                 BigInteger k, BigInteger n)
        {
            if (k.dataLength == 1 && k.data[0] == 0)
            {
                BigInteger[] result = new BigInteger[3];

                result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
                return result;
            }

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = n.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / n;

            // calculate values of s and t
            int s = 0;

            for (int index = 0; index < k.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((k.data[index] & mask) != 0)
                    {
                        index = k.dataLength;      // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = k >> s;

            //Console.WriteLine("s = " + s + " t = " + t);
            return LucasSequenceHelper(P, Q, t, n, constant, s);
        }
        //***********************************************************************
        // Returns a value that is equivalent to the integer square root
        // of the BigInteger.
        //
        // The integer square root of "this" is defined as the largest integer n
        // such that (n * n) <= this
        //
        //***********************************************************************

        public BigInteger sqrt()
        {
            uint numBits = (uint)this.bitCount();

            if ((numBits & 0x1) != 0)        // odd number of bits
                numBits = (numBits >> 1) + 1;
            else
                numBits = (numBits >> 1);

            uint bytePos = numBits >> 5;
            byte bitPos = (byte)(numBits & 0x1F);

            uint mask;

            BigInteger result = new BigInteger();
            if (bitPos == 0)
                mask = 0x80000000;
            else
            {
                mask = (uint)1 << bitPos;
                bytePos++;
            }
            result.dataLength = (int)bytePos;

            for (int i = (int)bytePos - 1; i >= 0; i--)
            {
                while (mask != 0)
                {
                    // guess
                    result.data[i] ^= mask;

                    // undo the guess if its square is larger than this
                    if ((result * result) > this)
                        result.data[i] ^= mask;

                    mask >>= 1;
                }
                mask = 0x80000000;
            }
            return result;
        }
        //***********************************************************************
        // Returns the modulo inverse of this.  Throws ArithmeticException if
        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
        //***********************************************************************

        public BigInteger modInverse(BigInteger modulus)
        {
            BigInteger[] p = { 0, 1 };
            BigInteger[] q = new BigInteger[2];    // quotients
            BigInteger[] r = { 0, 0 };             // remainders

            int step = 0;

            BigInteger a = modulus;
            BigInteger b = this;

            while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
            {
                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();

                if (step > 1)
                {
                    BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                    p[0] = p[1];
                    p[1] = pval;
                }

                if (b.dataLength == 1)
                    singleByteDivide(a, b, quotient, remainder);
                else
                    multiByteDivide(a, b, quotient, remainder);

                /*
                Console.WriteLine(quotient.dataLength);
                Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
                                  b.ToString(10), quotient.ToString(10), remainder.ToString(10),
                                  p[1].ToString(10));
                */

                q[0] = q[1];
                r[0] = r[1];
                q[1] = quotient; r[1] = remainder;

                a = b;
                b = remainder;

                step++;
            }

            if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
                throw (new ArithmeticException("No inverse!"));

            BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

            if ((result.data[maxLength - 1] & 0x80000000) != 0)
                result += modulus;  // get the least positive modulus

            return result;
        }
        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        public BigInteger genCoPrime(int bits, Random rand)
        {
            bool done = false;
            BigInteger result = new BigInteger();

            while (!done)
            {
                result.genRandomBits(bits, rand);
                //Console.WriteLine(result.ToString(16));

                // gcd test
                BigInteger g = result.gcd(this);
                if (g.dataLength == 1 && g.data[0] == 1)
                    done = true;
            }

            return result;
        }
        //***********************************************************************
        // Overloading of the NEGATE operator (2's complement)
        //***********************************************************************

        public static BigInteger operator -(BigInteger bi1)
        {
            // handle neg of zero separately since it'll cause an overflow
            // if we proceed.

            if (bi1.dataLength == 1 && bi1.data[0] == 0)
                return (new BigInteger());

            BigInteger result = new BigInteger(bi1);

            // 1's complement
            for (int i = 0; i < maxLength; i++)
                result.data[i] = (uint)(~(bi1.data[i]));

            // add one to result of 1's complement
            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < maxLength)
            {
                val = (long)(result.data[index]);
                val++;

                result.data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
                throw (new ArithmeticException("Overflow in negation.\n"));

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;
            return result;
        }
 public void WriteBigInteger(BigInteger BigInt)
 {
     byte[] temp = BigInt.getBytes();
     WriteByte((byte)temp.Length);
     WriteBytes(temp);
 }
        //***********************************************************************
        // Overloading of the unary ++ operator
        //***********************************************************************

        public static BigInteger operator ++(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val, carry = 1;
            int index = 0;

            while (carry != 0 && index < maxLength)
            {
                val = (long)(result.data[index]);
                val++;

                result.data[index] = (uint)(val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if (index > result.dataLength)
                result.dataLength = index;
            else
            {
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
            }

            // overflow check
            int lastPos = maxLength - 1;

            // overflow if initial value was +ve but ++ caused a sign
            // change to negative.

            if ((bi1.data[lastPos] & 0x80000000) == 0 &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Overflow in ++."));
            }
            return result;
        }
Example #19
0
        /// <summary>
        /// Set the Maze Key and get the Maze Key to apply it to the encryption algorithm
        /// </summary>
        /// <returns></returns>
        public BigInteger SetMazeKey()
        {
            Stopwatch SW_Timer = Stopwatch.StartNew();

            //Step 5/6 - Walking the Maze
            int beginPosX = equK(Username, (BigInteger)Username.IntValue(), PrivateSalt.IntValue()).IntValue() % (this.MazeSize.Width / 2) + 3;
            int beginPosY = equK(Password, (BigInteger)Username.IntValue(), PrivateSalt.IntValue()).IntValue() % (this.MazeSize.Height / 2) + 3;
            bool Back = false;

            int WalkSize = 30;

            this.MazeKey = new BigInteger();

            for (int i = 0, j = 1, k = 3, p = 7; i < MazeCount; i++, j++, k += 2, p += 5)
            {
                Maze maze = new Maze();
                maze.GenerateMaze(MazeSize.Width, MazeSize.Height, (int)((Username.data[j % (Username.dataLength - 1)] +
                                                                            Password.data[k % (Password.dataLength - 1)]) ^
                                                                            PrivateSalt.data[i % (PrivateSalt.dataLength - 1)]), 0);

                beginPosX = Math.Abs(beginPosX);
                beginPosY = Math.Abs(beginPosY);
                int endPosX = Math.Abs(beginPosX + (Back ? -WalkSize : WalkSize));
                int endPosY = Math.Abs(beginPosY + (Back ? -WalkSize : WalkSize));

                ArrayList list = maze.Solve(beginPosX, beginPosY, endPosX, endPosY, MazeSteps * 2);

                if (list.Count < 10)
                    throw new Exception("The Maze is too small");

                BigInteger tempCalc = new BigInteger();
                for (int s = 0; s < MazeSteps; s++)
                {
                    cCellPosition cell = list[s % list.Count] as cCellPosition;

                    int temp2 = cell.x * cell.y;
                    if (temp2 == 0)
                        continue;
                    tempCalc = equK(Username, temp2, s) ^ PrivateSalt.IntValue() ^ tempCalc;
                    this.MazeKey += tempCalc;
                    beginPosX = cell.x;
                    beginPosY = cell.y;
                }
                Back = !Back;
            }

            PatchKey(ref this._mazeKey);
            SW_Timer.Stop();
            return this.MazeKey;
        }
        //***********************************************************************
        // Overloading of subtraction operator
        //***********************************************************************

        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
        {
            BigInteger result = new BigInteger();

            result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

            long carryIn = 0;
            for (int i = 0; i < result.dataLength; i++)
            {
                long diff;

                diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
                result.data[i] = (uint)(diff & 0xFFFFFFFF);

                if (diff < 0)
                    carryIn = 1;
                else
                    carryIn = 0;
            }

            // roll over to negative
            if (carryIn != 0)
            {
                for (int i = result.dataLength; i < maxLength; i++)
                    result.data[i] = 0xFFFFFFFF;
                result.dataLength = maxLength;
            }

            // fixed in v1.03 to give correct datalength for a - (-b)
            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check

            int lastPos = maxLength - 1;
            if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
Example #21
0
 protected BigInteger equK(BigInteger P, BigInteger O, int C)
 {
     return (P / (O * O * O)) + C;
 }
        //***********************************************************************
        // Overloading of the unary -- operator
        //***********************************************************************

        public static BigInteger operator --(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            long val;
            bool carryIn = true;
            int index = 0;

            while (carryIn && index < maxLength)
            {
                val = (long)(result.data[index]);
                val--;

                result.data[index] = (uint)(val & 0xFFFFFFFF);

                if (val >= 0)
                    carryIn = false;

                index++;
            }

            if (index > result.dataLength)
                result.dataLength = index;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check
            int lastPos = maxLength - 1;

            // overflow if initial value was -ve but -- caused a sign
            // change to positive.

            if ((bi1.data[lastPos] & 0x80000000) != 0 &&
               (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Underflow in --."));
            }

            return result;
        }
Example #23
0
 private BigInteger cubicEqu(BigInteger a, BigInteger b, BigInteger c, BigInteger d, int x, BigInteger o)
 {
     return ((a * (x * x * x)) + (b * (x * x)) + (c * x) + d) + o;
 }
        //***********************************************************************
        // Overloading of multiplication operator
        //***********************************************************************

        public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
        {
            int lastPos = maxLength - 1;
            bool bi1Neg = false, bi2Neg = false;

            // take the absolute value of the inputs
            try
            {
                if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                {
                    bi1Neg = true; bi1 = -bi1;
                }
                if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                {
                    bi2Neg = true; bi2 = -bi2;
                }
            }
            catch (Exception ex)
            {
                SysLogger.Log(ex.Message, SysLogType.Error);
            }

            BigInteger result = new BigInteger();

            // multiply the absolute values
            try
            {
                for (int i = 0; i < bi1.dataLength; i++)
                {
                    if (bi1.data[i] == 0) continue;

                    ulong mcarry = 0;
                    for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
                    {
                        // k = i + j
                        ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
                                     (ulong)result.data[k] + mcarry;

                        result.data[k] = (uint)(val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }

                    if (mcarry != 0)
                        result.data[i + bi2.dataLength] = (uint)mcarry;
                }
            }
            catch (Exception ex)
            {
                SysLogger.Log(ex.Message, SysLogType.Error);
                throw (new ArithmeticException("Multiplication overflow."));
            }


            result.dataLength = bi1.dataLength + bi2.dataLength;
            if (result.dataLength > maxLength)
                result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            // overflow check (result is -ve)
            if ((result.data[lastPos] & 0x80000000) != 0)
            {
                if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign
                {
                    // handle the special case where multiplication produces
                    // a max negative number in 2's complement.

                    if (result.dataLength == 1)
                        return result;
                    else
                    {
                        bool isMaxNeg = true;
                        for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
                        {
                            if (result.data[i] != 0)
                                isMaxNeg = false;
                        }

                        if (isMaxNeg)
                            return result;
                    }
                }

                throw (new ArithmeticException("Multiplication overflow."));
            }

            // if input has different signs, then result is -ve
            if (bi1Neg != bi2Neg)
                return -result;

            return result;
        }
Example #25
0
 /// <summary>
 /// 
 /// </summary>
 /// <param name="EncryptedHash"></param>
 /// <param name="Key"></param>
 /// <param name="PrivateSalt"></param>
 /// <param name="PublicKey"></param>
 public UserDbInfo(BigInteger Username, BigInteger Password, string EncryptedHash, BigInteger Key, BigInteger PrivateSalt, byte[] PublicKey, string UsernameStr)
 {
     this.Username = Username;
     this.Password = Password;
     this.EncryptedHash = EncryptedHash;
     this.Key = Key;
     this.PrivateSalt = PrivateSalt;
     this.PublicKey = PublicKey;
     this.UsernameStr = UsernameStr;
 }
        //***********************************************************************
        // Overloading of unary << operators
        //***********************************************************************

        public static BigInteger operator <<(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.dataLength = shiftLeft(result.data, shiftVal);

            return result;
        }
 public InstructionInfo(WopEx.Instruction Inst, BigInteger Value)
 {
     this.Inst = Inst;
     this.Value = Value;
 }
        //***********************************************************************
        // Overloading of unary >> operators
        //***********************************************************************

        public static BigInteger operator >>(BigInteger bi1, int shiftVal)
        {
            BigInteger result = new BigInteger(bi1);
            result.dataLength = shiftRight(result.data, shiftVal);


            if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
            {
                for (int i = maxLength - 1; i >= result.dataLength; i--)
                    result.data[i] = 0xFFFFFFFF;

                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if ((result.data[result.dataLength - 1] & mask) != 0)
                        break;

                    result.data[result.dataLength - 1] |= mask;
                    mask >>= 1;
                }
                result.dataLength = maxLength;
            }

            return result;
        }
        //***********************************************************************
        // Overloading of the NOT operator (1's complement)
        //***********************************************************************

        public static BigInteger operator ~(BigInteger bi1)
        {
            BigInteger result = new BigInteger(bi1);

            for (int i = 0; i < maxLength; i++)
                result.data[i] = (uint)(~(bi1.data[i]));

            result.dataLength = maxLength;

            while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                result.dataLength--;

            return result;
        }
        //***********************************************************************
        // Constructor (Default value provided by BigInteger)
        //***********************************************************************

        public BigInteger(BigInteger bi)
        {
            data = new uint[maxLength];

            dataLength = bi.dataLength;

            for (int i = 0; i < dataLength; i++)
                data[i] = bi.data[i];
        }