public async Task <ScoringOutput> EvaluateAsync(ScoringInput input) { binding.Bind("data_0", input.data_0); var result = await AsAsync(session.EvaluateAsync(binding, "0")); var output = new ScoringOutput(); output.softmaxout_1 = result.Outputs["softmaxout_1"] as TensorFloat; return(output); }
public async Task <ScoringOutput> EvaluateAsync(ScoringInput input) { binding.Bind("data", input.data); var result = await AsAsync(session.EvaluateAsync(binding, "0")); var output = new ScoringOutput(); output.classLabel = result.Outputs["classLabel"] as TensorString; output.loss = result.Outputs["loss"] as IList <Dictionary <string, float> >; return(output); }
private static MessageBody ResultsToMessage(ScoringOutput outcome) { var resultVector = outcome.classLabel.GetAsVectorView(); var message = new MessageBody(); message.results = new LabelResult[1]; message.results[0] = new LabelResult() { label = resultVector.First(), confidence = 1.0 }; return(message); }
private static MessageBody ResultsToMessage(ScoringOutput outcome) { var resultVector = outcome.softmaxout_1.GetAsVectorView(); // Find the top 3 probabilities List <float> topProbabilities = new List <float>() { 0.0f, 0.0f, 0.0f }; List <int> topProbabilityLabelIndexes = new List <int>() { 0, 0, 0 }; // SqueezeNet returns a list of 1000 options, with probabilities for each, loop through all for (int i = 0; i < resultVector.Count(); i++) { // is it one of the top 3? for (int j = 0; j < 3; j++) { if (resultVector[i] > topProbabilities[j]) { topProbabilityLabelIndexes[j] = i; topProbabilities[j] = resultVector[i]; break; } } } var message = new MessageBody(); message.results = new LabelResult[3]; for (int i = 0; i < 3; i++) { message.results[i] = new LabelResult() { label = labels[topProbabilityLabelIndexes[i]], confidence = topProbabilities[i] }; } return(message); }
static async Task <int> Main(string[] args) { try { // // Parse options // Options = new AppOptions(); Options.Parse(args); if (Options.ShowList) { var devices = await FrameSource.GetSourceNamesAsync(); Log.WriteLine("Available cameras:"); foreach (var device in devices) { Log.WriteLine(device); } } if (Options.Exit) { return(-1); } if (string.IsNullOrEmpty(Options.DeviceId)) { throw new ApplicationException("Please use --device to specify which camera to use"); } // // Init module client // if (Options.UseEdge) { Log.WriteLine($"{AppOptions.AppName} module starting."); await BlockTimer("Initializing Azure IoT Edge", async() => await InitEdge()); } cts = new CancellationTokenSource(); AssemblyLoadContext.Default.Unloading += (ctx) => cts.Cancel(); Console.CancelKeyPress += (sender, cpe) => cts.Cancel(); // // Load model // ScoringModel model = null; await BlockTimer($"Loading modelfile '{Options.ModelPath}' on the {(Options.UseGpu ? "GPU" : "CPU")}", async() => { var d = Directory.GetCurrentDirectory(); var path = d + "\\" + Options.ModelPath; StorageFile modelFile = await AsAsync(StorageFile.GetFileFromPathAsync(path)); model = await ScoringModel.CreateFromStreamAsync(modelFile, Options.UseGpu); }); // // Open camera // using (var frameSource = new FrameSource()) { await frameSource.StartAsync(Options.DeviceId, Options.UseGpu); // // Main loop // do { Log.WriteLineVerbose("Getting frame..."); using (var frame = await frameSource.GetFrameAsync()) { var inputImage = frame.VideoMediaFrame.GetVideoFrame(); ImageFeatureValue imageTensor = ImageFeatureValue.CreateFromVideoFrame(inputImage); // // Evaluate model // ScoringOutput outcome = null; var evalticks = await BlockTimer("Running the model", async() => { var input = new ScoringInput() { data = imageTensor }; outcome = await model.EvaluateAsync(input); }); // // Print results // var message = ResultsToMessage(outcome); message.metrics.evaltimeinms = evalticks; var json = JsonConvert.SerializeObject(message); Log.WriteLineRaw($"Recognized {json}"); // // Send results to Edge // if (Options.UseEdge) { var eventMessage = new Message(Encoding.UTF8.GetBytes(json)); await ioTHubModuleClient.SendEventAsync("resultsOutput", eventMessage); // Let's not totally spam Edge :) await Task.Delay(500); } } }while (Options.RunForever && !cts.Token.IsCancellationRequested); await frameSource.StopAsync(); } return(0); } catch (Exception ex) { Log.WriteLineException(ex); return(-1); } }
static async Task <int> Main(string[] args) { try { // // Parse options // Options = new AppOptions(); Options.Parse(args); if (Options.ShowList) { var devices = await FrameSource.GetSourceNamesAsync(); Log.WriteLine("Available cameras:"); foreach (var device in devices) { Log.WriteLine(device); } } if (Options.Exit) { return(-1); } if (!Options.UseImages) { if (string.IsNullOrEmpty(Options.DeviceId)) { throw new ApplicationException("Please use --device to specify which camera to use"); } } try { string sv = AnalyticsInfo.VersionInfo.DeviceFamilyVersion; ulong v = ulong.Parse(sv); ulong v1 = (v & 0xFFFF000000000000L) >> 48; ulong v2 = (v & 0x0000FFFF00000000L) >> 32; ulong v3 = (v & 0x00000000FFFF0000L) >> 16; ulong v4 = (v & 0x000000000000FFFFL); var systemVersion = $"{v1}.{v2}.{v3}.{v4}"; _stats.CurrentVideoDeviceId = Options.DeviceId; _stats.Platform = $"{AnalyticsInfo.VersionInfo.DeviceFamily} - {System.Environment.GetEnvironmentVariable("PROCESSOR_ARCHITECTURE") ?? "Unknown"} - {systemVersion}"; } catch (Exception) { } // // Init module client // if (Options.UseEdge) { Log.WriteLine($"{AppOptions.AppName} module starting."); await BlockTimer("Initializing Azure IoT Edge", async() => await InitEdge()); } cts = new CancellationTokenSource(); AssemblyLoadContext.Default.Unloading += (ctx) => cts.Cancel(); Console.CancelKeyPress += (sender, cpe) => cts.Cancel(); // // Load model // ScoringModel model = null; await BlockTimer($"Loading modelfile '{Options.ModelPath}' on the {(Options.UseGpu ? "GPU" : "CPU")}", async() => { var d = Directory.GetCurrentDirectory(); var path = d + "\\" + Options.ModelPath; StorageFile modelFile = await AsAsync(StorageFile.GetFileFromPathAsync(path)); model = await ScoringModel.CreateFromStreamAsync(modelFile, Options.UseGpu); }); _stats.OnnxModelLoaded = true; _stats.CurrentOnnxModel = Options.ModelPath; _stats.IsGpu = Options.UseGpu; // WebServer Code HttpServer httpsv = null; bool HttpServerStarted = false; if (Options.RunForever) { try { Log.WriteLine($"Start HTTP Server on port : " + Options.WebServerPort.ToString()); httpsv = new HttpServer(Options.WebServerPort); httpsv.Start(); httpsv.OnGet += HttpsvOnOnGet; HttpServerStarted = true; Log.WriteLine($"- HTTP Server Started."); Log.WriteLine($""); } catch (Exception e) { HttpServerStarted = false; Log.WriteLine($"Exiting - Websockets Server Failed to start : " + e.Message); } } // // Open camera // FrameSource frameSource = null; ImageFileSource imageFileSource = null; if (Options.UseImages) { imageFileSource = new ImageFileSource(); imageFileSource.ScanUpdateQueue(Options.ImagePath); } else { frameSource = new FrameSource(); await frameSource.StartAsync(Options.DeviceId, Options.UseGpu); } _stats.DeviceInitialized = true; SetLatestStatsPayload(JsonConvert.SerializeObject(_stats)); // // Main loop // do { ScoringOutput outcome = null; int evalticks = 0; Log.WriteLineVerbose("Getting frame..."); byte[] data = new byte[] { }; byte[] annotatedData = new byte[] { }; MessageBody message = null; // // Use Image File Source or fall back to Webcam Source if not specified // if (Options.UseImages) { var(fileName, sbmp) = await imageFileSource.GetNextImageAsync(Options.ImagePath, cts.Token); using (var vf = VideoFrame.CreateWithSoftwareBitmap(sbmp)) { ImageFeatureValue imageTensor = ImageFeatureValue.CreateFromVideoFrame(vf); _stats.TotalFrames = _stats.TotalFrames + 1; // // Evaluate model // var ticksTaken = await BlockTimer($"Running the model", async() => { var input = new ScoringInput() { data = imageTensor }; outcome = await model.EvaluateAsync(input); }); evalticks = ticksTaken; message = ResultsToMessage(outcome); message.metrics.evaltimeinms = evalticks; _stats.TotalEvaluations = _stats.TotalEvaluations + 1; message.imgSrc = fileName; string summaryText = ""; if (message.results.Length > 0) { summaryText = $"Matched : {message.results[0].label} - Confidence ={message.results[0].confidence.ToString("P")} - Eval Time {message.metrics.evaltimeinms} ms"; } data = await ImageUtils.GetConvertedImage(sbmp); annotatedData = await ImageUtils.AnnotateImage(sbmp, $"Current Image : {fileName ?? "-"}", summaryText); } } else { using (var frame = await frameSource.GetFrameAsync()) { var inputImage = frame.VideoMediaFrame.GetVideoFrame(); ImageFeatureValue imageTensor = ImageFeatureValue.CreateFromVideoFrame(inputImage); _stats.TotalFrames = _stats.TotalFrames + 1; // // Evaluate model // var ticksTaken = await BlockTimer("Running the model", async() => { var input = new ScoringInput() { data = imageTensor }; outcome = await model.EvaluateAsync(input); }); evalticks = ticksTaken; message = ResultsToMessage(outcome); message.metrics.evaltimeinms = evalticks; _stats.TotalEvaluations = _stats.TotalEvaluations + 1; string summaryText = ""; if (message.results.Length > 0) { summaryText = $"Matched : {message.results[0].label} - Confidence ={message.results[0].confidence.ToString("P")} - Eval Time {message.metrics.evaltimeinms} ms"; } data = await ImageUtils.GetConvertedImage(inputImage.SoftwareBitmap); annotatedData = await ImageUtils.AnnotateImage(inputImage.SoftwareBitmap, $"Current Webcam : {Options.DeviceId ?? "-"}", summaryText); } } if (message != null) { // // Print results // message.metrics.evaltimeinms = evalticks; var json = JsonConvert.SerializeObject(message, new JsonSerializerSettings { //won't print null imgSrc if null NullValueHandling = NullValueHandling.Ignore }); Log.WriteLineRaw($"Inferenced: {json}"); if (Options.UseWebServer) { // // Update the latest webserver payload snapshots with data from inferencing // UpdateWebServerPayloads(message, data, annotatedData); } // // Send results to Edge // if (Options.UseEdge) { var eventMessage = new Message(Encoding.UTF8.GetBytes(json)); await ioTHubModuleClient.SendEventAsync("resultsOutput", eventMessage); // Let's not totally spam Edge :) await Task.Delay(500); } else if (Options.UseImages) { //slow it down a little.. await Task.Delay(TimeSpan.FromSeconds(5)); } } }while (Options.RunForever && !cts.Token.IsCancellationRequested); if (frameSource != null) { await frameSource.StopAsync(); } if (HttpServerStarted) { try { Log.WriteLine($"- Stopping Web Server."); httpsv.OnGet -= HttpsvOnOnGet; httpsv.Stop(); httpsv = null; Log.WriteLine($"- Web Server Stopped."); } catch (Exception) { } } return(0); } catch (Exception ex) { Log.WriteLineException(ex); return(-1); } }