Example #1
0
        private static SVDRec svdLAS2(SMat A)
        {
            int ibeta, it, irnd, machep, negep, n, steps, nsig, neig;
            double kappa = 1e-6;

            double[] las2end = new double[2] { -1.0e-30, 1.0e-30 };
            double[] ritz, bnd;

            double[][] wptr = new double[10][];

            svdResetCounters();

            int dimensions = A.rows;
            if (A.cols < dimensions) dimensions = A.cols;
            int iterations = dimensions;

            // Check parameters
            if (check_parameters(A, dimensions, iterations, las2end[0], las2end[1]) > 0) return null;

            // If A is wide, the SVD is computed on its transpose for speed.
            bool transpose = false;
            if (A.cols >= A.rows * 1.2)
            {
                //Console.WriteLine("TRANSPOSING THE MATRIX FOR SPEED\n");
                transpose = true;
                A = svdTransposeS(A);
            }

            n = A.cols;
            // Compute machine precision
            ibeta = it = irnd = machep = negep = 0;
            machar(ref ibeta, ref it, ref irnd, ref machep, ref negep);
            eps1 = eps * Math.Sqrt((double)n);
            reps = Math.Sqrt(eps);
            eps34 = reps * Math.Sqrt(reps);
            //Console.WriteLine("Machine precision {0} {1} {2} {3} {4}", ibeta, it, irnd, machep, negep);

            // Allocate temporary space.
            wptr[0] = new double[n];
            for (int i = 0; i < n; ++i) wptr[0][i] = 0.0;
            wptr[1] = new double[n];
            wptr[2] = new double[n];
            wptr[3] = new double[n];
            wptr[4] = new double[n];
            wptr[5] = new double[n];
            wptr[6] = new double[iterations];
            wptr[7] = new double[iterations];
            wptr[8] = new double[iterations];
            wptr[9] = new double[iterations + 1];
            ritz = new double[iterations + 1];
            for (int i = 0; i < iterations + 1; ++i) ritz[0] = 0.0;
            bnd = new double[iterations + 1];
            for (int i = 0; i < iterations + 1; ++i) bnd[0] = 0.0;

            LanStore = new double[iterations + MAXLL][];
            for (int i = 0; i < iterations + MAXLL; ++i)
            {
                LanStore[i] = null;
            }
            OPBTemp = new double[A.rows];

            // Actually run the lanczos thing:
            neig = 0;
            steps = lanso(A, iterations, dimensions, las2end[0], las2end[1], ritz, bnd, wptr, ref neig, n);

            //Console.WriteLine("NUMBER OF LANCZOS STEPS {0}", steps + 1);
            //Console.WriteLine("RITZ VALUES STABILIZED = RANK {0}", neig);

            kappa = svd_dmax(Math.Abs(kappa), eps34);

            SVDRec R = new SVDRec();
            R.d = dimensions;
            DMat Tmp1 = new DMat();
            Tmp1.rows = R.d;
            Tmp1.cols = A.rows;
            Tmp1.value = new double[Tmp1.rows][];
            for (int mm = 0; mm < Tmp1.rows; ++mm)
            {
                Tmp1.value[mm] = new double[Tmp1.cols];
                for (int j = 0; j < Tmp1.cols; ++j)
                {
                    Tmp1.value[mm][j] = 0.0;
                }
            }
            R.Ut = Tmp1;
            R.S = new double[R.d];
            for (int k = 0; k < R.d; ++k)
            {
                R.S[k] = 0.0;
            }
            DMat Tmp2 = new DMat();
            Tmp2.rows = R.d;
            Tmp2.cols = A.cols;
            Tmp2.value = new double[Tmp2.rows][];
            for (int mm = 0; mm < Tmp2.rows; ++mm)
            {
                Tmp2.value[mm] = new double[Tmp2.cols];
                for (int j = 0; j < Tmp2.cols; ++j)
                {
                    Tmp2.value[mm][j] = 0.0;
                }
            }
            R.Vt = Tmp2;

            nsig = ritvec(n, A, R, kappa, ritz, bnd, wptr[6], wptr[9], wptr[5], steps, neig);

            // This swaps and transposes the singular matrices if A was transposed.
            if (transpose)
            {
                DMat T;
                T = R.Ut;
                R.Ut = R.Vt;
                R.Vt = T;
            }
            return R;
        }
Example #2
0
 private static void svdWriteDenseMatrix(DMat D, string filename)
 {
     using (FileStream stream = new FileStream(filename, FileMode.Create))
     {
         using (BinaryWriter writer = new BinaryWriter(stream))
         {
             writer.Write(System.Net.IPAddress.HostToNetworkOrder(D.rows));
             writer.Write(System.Net.IPAddress.HostToNetworkOrder(D.cols));
             for (int k = 0; k < D.rows; ++k)
             {
                 for (int j = 0; j < D.cols; ++j)
                 {
                     float buf = (float)(D.value[k][j]);
                     byte[] b = BitConverter.GetBytes(buf);
                     int x = BitConverter.ToInt32(b, 0);
                     writer.Write(System.Net.IPAddress.HostToNetworkOrder(x));
                 }
             }
             writer.Flush();
             writer.Close();
         }
         stream.Close();
     }
 }