Example #1
0
        private static IEnumerable<List<Edge>> AllTriangles(Graph graph)
        {
            List<Vertex> vertices = new List<Vertex>(graph.Vertices);
            vertices.Sort((x, y) => graph.GetDegree(x).CompareTo(graph.GetDegree(y)));
            vertices.Reverse(); // From highest to lowest
            Dictionary<Vertex, int> index = new Dictionary<Vertex, int>();
            Dictionary<Vertex, List<Vertex>> A = new Dictionary<Vertex, List<Vertex>>();

            for (int i = 0; i < vertices.Count; i++)
            {
                index.Add(vertices[i], i);
                A.Add(graph.Vertices[i], new List<Vertex>());
            }

            foreach (var firstVertex in vertices)
            {
                foreach (var firstEdge in graph.GetEdgesForVertex(firstVertex))
                {
                    var secondVertex = firstEdge.Other(firstVertex);
                    if (index[firstVertex] < index[secondVertex])
                    {
                        foreach (var thirdVertex in A[firstVertex].Intersect(A[secondVertex]))
                        {
                            var secondEdge =
                                graph.GetEdgesForVertex(firstVertex).Single(x => x.Other(firstVertex) == thirdVertex);
                            var thirdEdge =
                                graph.GetEdgesForVertex(secondVertex).Single(x => x.Other(secondVertex) == thirdVertex);
                            yield return new List<Edge>(new [] { firstEdge, secondEdge, thirdEdge });
                        }

                        A[secondVertex].Add(firstVertex);
                    }
                }
            }
        }
Example #2
0
        /// <summary>
        /// Runs the Degree Test to reduce the graph.
        /// </summary>
        /// <param name="graph">The graph on which to run the test.</param>
        /// <returns>The reduced graph.</returns>
        public static ReductionResult RunTest(Graph graph)
        {
            // Use some simple rules to reduce the problem.
            // The rules are: - if a vertex v has degree 1 and is not part of the required nodes, remove the vertex.
            //                - if a vertex v has degree 1 and is part of the required nodes, the one edge it is
            //                  connected to has to be in the solution, and as a consequence, the node at the other side
            //                  is either a Steiner node or also required.
            //                - (not implemented yet) if a vertex v is required and has degree 2, and thus is connected to 2 edges,
            //                  namely e1 and e2, and cost(e1) < cost(e2) and e1 = (u, v) and u is
            //                  also a required vertex, then every solution must contain e1

            var result = new ReductionResult();

            // Remove leaves as long as there are any
            var leaves = graph.Vertices.Where(v => graph.GetDegree(v) == 1 && !graph.Terminals.Contains(v)).ToList();
            while (leaves.Count > 0)
            {
                foreach (var leaf in leaves)
                    graph.RemoveVertex(leaf);
                result.RemovedVertices.AddRange(leaves);
                leaves = graph.Vertices.Where(v => graph.GetDegree(v) == 1 && !graph.Terminals.Contains(v)).ToList();
            }

            // When a leaf is required, add the node on the other side of its one edge to required nodes
            var requiredLeaves = graph.Vertices.Where(v => graph.GetDegree(v) == 1 && graph.Terminals.Contains(v)).ToList();
            foreach (var requiredLeaf in requiredLeaves)
            {
                // Find the edge this leaf is connected to
                var alsoRequired = graph.GetEdgesForVertex(requiredLeaf).Single().Other(requiredLeaf);
                if (!graph.Terminals.Contains(alsoRequired))
                    graph.RequiredSteinerNodes.Add(alsoRequired);
            }

            return result;
        }
Example #3
0
File: BLS.cs Project: MadMatt25/STP
        private void AddEdgesToMST(Graph mst, List<Edge> edges)
        {
            foreach (var edge in edges)
            {
                if (edge.WhereBoth(x => mst.GetDegree(x) > 0)) //Both vertices of this edge are in the MST, introducing this edge creates cycle!
                {
                    var v1 = edge.Either();
                    var v2 = edge.Other(v1);
                    var components = mst.CreateComponentTable();

                    if (components[v1] == components[v2])
                    {
                        // Both are in the same component, and a path exists.
                        // Travel the path to see if adding this edge makes it cheaper
                        var path = Algorithms.DijkstraPath(v1, v2, mst);

                        // However, we can remove a set of edges between two nodes
                        // When going from T1 to T3
                        // E.g.: T1 - v2 - v3 - v4 - T2 - v5 - v6 - T3
                        // The edges between T1, v2, v3, v4, T2 cost more than the path between T1 and T3.
                        // Removing those edges, and adding the new edge from T1 to T3, also connects
                        // T1 to T2, so still a tree!
                        var from = path.Start;
                        var last = path.Start;
                        int betweenTerminals = 0;
                        var subtractedPath = new Path(path.Start);
                        List<Edge> edgesInSubtraction = new List<Edge>();
                        Dictionary<Edge, List<Edge>> subtractions = new Dictionary<Edge, List<Edge>>();
                        for (int i = 0; i < path.Edges.Count; i++)
                        {
                            var pe = path.Edges[i];
                            betweenTerminals += pe.Cost;
                            last = pe.Other(last);
                            edgesInSubtraction.Add(pe);
                            if (mst.GetDegree(last) > 2 || mst.Terminals.Contains(last) || i == path.Edges.Count - 1)
                            {
                                var subtractedEdge = new Edge(from, last, betweenTerminals);
                                subtractions.Add(subtractedEdge, edgesInSubtraction);
                                edgesInSubtraction = new List<Edge>();
                                subtractedPath.Edges.Add(subtractedEdge);
                                from = last;
                                betweenTerminals = 0;
                            }
                        }

                        var mostCostly = subtractedPath.Edges[0];
                        for (int i = 1; i < subtractedPath.Edges.Count; i++)
                        {
                            if (subtractedPath.Edges[i].Cost > mostCostly.Cost)
                                mostCostly = subtractedPath.Edges[i];
                        }

                        if (mostCostly.Cost >= edge.Cost)
                        {
                            foreach (var e in subtractions[mostCostly])
                                mst.RemoveEdge(e, false);
                            mst.AddEdge(edge);
                        }
                    }
                    else // Connect the two disconnected components!
                        mst.AddEdge(edge);
                }
                else
                    mst.AddEdge(edge);
            }
        }
        public static Graph RunSolver(Graph graph)
        {
            var solution = new Graph(graph.Vertices);

            DijkstraState state = new DijkstraState();
            // Create the states needed for every execution of the Dijkstra algorithm
            foreach (var terminal in graph.Terminals)
                state.AddVertexToInterleavingDijkstra(terminal, graph);

            // Initialize
            Vertex currentVertex = state.GetNextVertex();
            FibonacciHeap<int, Vertex> labels = state.GetLabelsFibonacciHeap();
            HashSet<Vertex> visited = state.GetVisitedHashSet();
            Dictionary<Vertex, Path> paths = state.GetPathsFound();
            Dictionary<Vertex, FibonacciHeap<int, Vertex>.Node> nodes = state.GetNodeMapping();
            Dictionary<Vertex, Edge> comingFrom = state.GetComingFromDictionary();

            Dictionary<Vertex, int> components = solution.CreateComponentTable();
            Dictionary<Vertex, double> terminalFValues = CreateInitialFValuesTable(graph);

            int maxLoopsNeeded = graph.Terminals.Count * graph.NumberOfVertices;
            int loopsDone = 0;
            int updateInterval = 100;

            int longestPath = graph.Terminals.Max(x => Algorithms.DijkstraToAll(x, graph).Max(y => y.Value));

            while (state.GetLowestLabelVertex() != null)
            {
                if (loopsDone % updateInterval == 0)
                    Console.Write("\rRunning IDA... {0:0.0}%                           \r", 100.0 * loopsDone / maxLoopsNeeded);
                loopsDone++;

                if (state.GetLowestLabelVertex() != currentVertex)
                {
                    // Interleave. Switch to the Dijkstra procedure of the vertex which currently has the lowest distance.
                    state.SetLabelsFibonacciHeap(labels);
                    state.SetVisitedHashSet(visited);
                    state.SetPathsFound(paths);
                    state.SetComingFromDictionary(comingFrom);

                    currentVertex = state.GetNextVertex();
                    labels = state.GetLabelsFibonacciHeap();
                    visited = state.GetVisitedHashSet();
                    paths = state.GetPathsFound();
                    nodes = state.GetNodeMapping();
                    comingFrom = state.GetComingFromDictionary();
                }

                // Do one loop in Dijkstra algorithm
                var currentNode = labels.ExtractMin();
                var current = currentNode.Value;

                if (currentNode.Key > longestPath / 2)
                    break; //Travelled across the half of longest distance. No use in going further.

                // Consider all edges ending in unvisited neighbours
                var edges = graph.GetEdgesForVertex(current).Where(x => !visited.Contains(x.Other(current)));
                // Update labels on the other end
                foreach (var edge in edges)
                {
                    if (currentNode.Key + edge.Cost < nodes[edge.Other(current)].Key)
                    {
                        labels.DecreaseKey(nodes[edge.Other(current)], currentNode.Key + edge.Cost);
                        comingFrom[edge.Other(current)] = edge;
                    }
                }

                visited.Add(current);
                if (current != currentVertex)
                {
                    // Travel back the new path
                    List<Edge> pathEdges = new List<Edge>();
                    Vertex pathVertex = current;
                    while (pathVertex != currentVertex)
                    {
                        pathEdges.Add(comingFrom[pathVertex]);
                        pathVertex = comingFrom[pathVertex].Other(pathVertex);
                    }

                    pathEdges.Reverse();
                    Path path = new Path(currentVertex);
                    path.Edges.AddRange(pathEdges);
                    paths[current] = path;
                }

                // Find matching endpoints from two different terminals
                var mutualEnd = state.FindPathsEndingInThisVertex(current);
                if (mutualEnd.Count() > 1)
                {
                    var terminals = mutualEnd.Select(x => x.Start).ToList();

                    // Step 1. Calculate new heuristic function value for this shared point.
                    // f(x) = (Cost^2)/(NumberOfTerminals^3)
                    var f1 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 2) / Math.Pow(terminals.Count, 3);
                    var f2 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 1) / Math.Pow(terminals.Count, 2);
                    var f3 = Math.Pow(mutualEnd.Sum(p => p.TotalCost), 3) / Math.Pow(terminals.Count, 2);
                    var terminalsAvgF = terminals.Select(x => terminalFValues[x]).Average();
                    var terminalsMinF = terminals.Select(x => terminalFValues[x]).Min();
                    var f = (new[] { f1, f2, f3 }).Max();
                    Debug.WriteLine("F value: {0}, Fmin: {3} - Connecting terminals: {1} via {2}", f, string.Join(", ", terminals.Select(x => x.VertexName)), current.VertexName, terminalsMinF);

                    // Do not proceed if f > avgF AND working in same component
                    if (terminals.Select(x => components[x]).Distinct().Count() == 1 && f > terminalsMinF)
                        continue;

                    Debug.WriteLine("Proceeding with connection...");

                    // Step 2. Disconnect terminals in mutual component.
                    foreach (var group in terminals.GroupBy(x => components[x]))
                    {
                        if (group.Count() <= 1)
                            continue;

                        HashSet<Edge> remove = new HashSet<Edge>();
                        var sameComponentTerminals = group.ToList();
                        for (int i = 0; i < sameComponentTerminals.Count-1; i++)
                        {
                            for (int j = i+1; j< sameComponentTerminals.Count; j++)
                            {
                                var removePath = Algorithms.DijkstraPath(sameComponentTerminals[i], sameComponentTerminals[j], solution);
                                foreach (var e in removePath.Edges)
                                    remove.Add(e);
                            }
                        }

                        foreach (var e in remove)
                            solution.RemoveEdge(e, false);
                    }

                    components = solution.CreateComponentTable();

                    // Step 3. Reconnect all now disconnected terminals via shared endpoint
                    foreach (var t in terminals)
                    {
                        var path = Algorithms.DijkstraPath(t, current, graph);
                        foreach (var edge in path.Edges)
                            solution.AddEdge(edge);
                        // Update f value
                        terminalFValues[t] = f;
                    }

                    components = solution.CreateComponentTable();
                }
            }

            // If this solution is connected, take MST
            if (graph.Terminals.Select(x => components[x]).Distinct().Count() == 1)
            {
                // Clean up!
                foreach (var vertex in solution.Vertices.Where(x => solution.GetDegree(x) == 0).ToList())
                    solution.RemoveVertex(vertex);

                int componentNumber = graph.Terminals.Select(x => components[x]).Distinct().Single();
                foreach (var vertex in components.Where(x => x.Value != componentNumber).Select(x => x.Key).ToList())
                    solution.RemoveVertex(vertex);

                solution = Algorithms.Kruskal(solution);
                return solution;
            }

            // If the solution is not connected, it is not a good solution.
            return null;
        }