Example #1
0
        public KNN_SVM(string path, double sigma, double gamma, Kernel kernel, int k, ImageVector[] goodImages, ImageVector[] badImages)
        {
            type = "KNN & SVM";
            svm = new SVM_Matlab(path, sigma, gamma, (SVM_Matlab.Kernel)kernel, goodImages, badImages);
            knn = new KNN_Matlab(path, k, goodImages, badImages);

            totalImages = 0;

            this.goodImages = goodImages;
            this.badImages = badImages;

            learnedTrue = new bool[goodImages.Length];
            learnedFalse = new bool[badImages.Length];
            restartTest();

            userPath = path + "\\KNN_SVM";
            resultPath = userPath + "\\sigma_" + sigma + "_gamma_" + gamma;

            learn = GetLearnCommand(userPath, sigma, gamma, kernel);
            decideSVM = GetDecideCommandSVM(userPath, kernel);
            decideKNN = GetDecideCommandKNN(userPath, k);

            matlab = new MLApp.MLApp();
            cd = "cd " + smartAlbum.getMatlabDirectory();
            matlab.Execute(cd);
        }
Example #2
0
        public bool Learn()
        {
            // Get list of files in folders
            string[] filesAll = Testing.GetFilesFromDirectory(decidePath).ToArray();
            if (filesAll.Length <= 0)
                return false;

            ImageVector[] allImages;
            extractAlbum(out allImages, filesAll, false);
            //allImages = Internal_GetImages(filesAll);
            //ImageVector[] ImagesLearnedTrue = Internal_GetImages(learnedTrue);
            //ImageVector[] ImagesLearnedFalse = Internal_GetImages(learnedFalse);

            learningAlgoSvm = new SVM_Matlab(userPath, 1, 1, SVM_Matlab.Kernel.SVM_POLY, allImages);
            learningAlgoSvm.Learn(subset, isImageGood);

            return true;
        }