public static List <Position> FindPath(Grid grid, Position start, Position end, Offset[] movementPattern, int iterationLimit) { ClearStepList(); if (start == end) { return(new List <Position> { start }); } var head = new MinHeapNode(start, ManhattanDistance(start, end)); var open = new MinHeap(); open.Push(head); var costSoFar = new float[grid.DimX * grid.DimY]; var cameFrom = new Position[grid.DimX * grid.DimY]; while (open.HasNext() && iterationLimit > 0) { // Get the best candidate var current = open.Pop().Position; MessageCurrent(current, PartiallyReconstructPath(grid, start, current, cameFrom)); if (current == end) { return(ReconstructPath(grid, start, end, cameFrom)); } Step(grid, open, cameFrom, costSoFar, movementPattern, current, end); MessageClose(current); --iterationLimit; } return(null); }
private static void Step( Grid grid, Boundary boundary, MinHeap open, Position[] cameFrom, float[] costSoFar, Offset[] movementPattern, AgentShape shape, Position current, Position end, ref Position closestPosition, ref float closestDistance) { // Get the cost associated with getting to the current position var initialCost = costSoFar[grid.GetIndexUnchecked(current)]; // Get all directions we can move to according to the movement pattern and the dimensions of the grid foreach (var option in GetMovementOptions(current, boundary, movementPattern)) { var position = current + option; var cellCost = grid.GetCellCostUnchecked(position, shape); // Ignore this option if the cell is blocked if (float.IsInfinity(cellCost)) { continue; } var index = grid.GetIndexUnchecked(position); // Compute how much it would cost to get to the new position via this path var newCost = initialCost + cellCost * option.Cost; // Compare it with the best cost we have so far, 0 means we don't have any path that gets here yet var oldCost = costSoFar[index]; if (!(oldCost <= 0) && !(newCost < oldCost)) { continue; } // Update the best path and the cost if this path is cheaper costSoFar[index] = newCost; cameFrom[index] = current; // Use the heuristic to compute how much it will probably cost // to get from here to the end, and store the node in the open list var remainCost = ManhattanDistance(position, end); var expectedCost = newCost + remainCost; open.Push(new MinHeapNode(position, expectedCost)); // If current position is closest to the end then remember it, // we may need it if no path is found. if (remainCost < closestDistance) { closestPosition = position; closestDistance = remainCost; } MessageOpen(position); } }
/// <summary> /// Find path /// </summary> /// <param name="grid">Grid</param> /// <param name="start">Start point</param> /// <param name="end">End point</param> /// <param name="movementPattern">Movement pattern</param> /// <param name="shape">Shape of an agent</param> /// <param name="path">Returns shortest path from start to the end if found. Can also return partial path if end is not reachable. In case of error returns empty array.</param> /// <param name="iterationLimit">Maximum count of iterations</param> /// <returns>Result of the path finding.</returns> public static PathFindResult TryFindPath(Grid grid, Position start, Position end, Offset[] movementPattern, AgentShape shape, out List <Position> path, int iterationLimit = int.MaxValue) { ClearStepList(); // If is where should be, then there's no path to take if (start == end) { path = new List <Position>(); return(PathFindResult.AlreadyAtTheEnd); } // To avoid lot of grid boundaries checking calculations during path finding, do the math here. // So get the possible boundaries considering the shape of the agent. var boundary = Boundary.FromSizeAndShape(grid.DimX, grid.DimY, shape); // Make sure that agent is within grid. This means agent shape has to be considered. if (!boundary.IsInside(start)) { path = new List <Position>(); return(PathFindResult.StartOutsideBoundaries); } // Make sure that end position is within grid if (!grid.IsInside(end)) { path = new List <Position>(); return(PathFindResult.EndOutsideBoundaries); } var head = new MinHeapNode(start, ManhattanDistance(start, end)); var open = new MinHeap(); open.Push(head); var costSoFar = new float[grid.DimX * grid.DimY]; var cameFrom = new Position[grid.DimX * grid.DimY]; // Keep record of closest point in case the end point is not reachable Position closestPosition = start; float closestDistance = float.PositiveInfinity; // Try to find path until options run out or iterations limit is exceeded while (open.HasNext() && iterationLimit > 0) { // Get the best candidate var current = open.Pop().Position; MessageCurrent(current, PartiallyReconstructPath(grid, start, current, cameFrom)); if (current == end) { path = ReconstructPath(grid, start, end, cameFrom); return(PathFindResult.PathFound); } Step(grid, boundary, open, cameFrom, costSoFar, movementPattern, shape, current, end, ref closestPosition, ref closestDistance); MessageClose(current); --iterationLimit; } // Construct path to the closest position if (start != closestPosition) { MessageCurrent(closestPosition, PartiallyReconstructPath(grid, start, closestPosition, cameFrom)); path = ReconstructPath(grid, start, closestPosition, cameFrom); return(PathFindResult.PartialPathFound); } // Stuck path = new List <Position>(); return(PathFindResult.Stuck); }