public static void Main(string[] args)
        {
            RunProteinSignificanceClassifier proteinBasedSignificance = new RunProteinSignificanceClassifier();
            int numberSamples = 0;
            // Parse the ExperimentalDesign File to get info of samples and conditions they belong to
            Dictionary <string, List <string> > samplefileConditionRelation = proteinBasedSignificance.ExpermientalDesignParser("C:/Users/Anay/Desktop/UW Madison/Smith Lab/Spectra Data/ExperimentalDesign.tsv"
                                                                                                                                , ref numberSamples);
            // get all conditions and pair them up for Significance classification
            List <string>         allConditions = new List <string>(samplefileConditionRelation.Keys);
            List <List <string> > allTwoConditionCombinations = proteinBasedSignificance.GenerateAllCombinationsOfTwoConditions(allConditions);

            foreach (List <string> conditionPair in allTwoConditionCombinations)
            {
                string firstCondition      = conditionPair[0];
                string secondCondition     = conditionPair[1];
                double sOValue             = 0.1;
                double meanFraction        = 0.1;
                int    maxSignificantCount = 0;

                while (meanFraction < 1)
                {
                    while (sOValue < 1)
                    {
                        for (int k = 0; k < numberSamples; k++)
                        {
                            proteinBasedSignificance = new RunProteinSignificanceClassifier();
                            //Declaring variables which will be generated after parsing QuantifiedPeptides file
                            List <ProteinRowInfo> allProteinInfo   = new List <ProteinRowInfo>();
                            List <string>         samplesFileNames = new List <string>();
                            int maxInvalidIntensityValues          = k;
                            proteinBasedSignificance.ProteinDataParser(allProteinInfo, maxInvalidIntensityValues,
                                                                       samplesFileNames, "C:/Users/Anay/Desktop/UW Madison/Smith Lab/Spectra Data/FlashLFQ_2020-04-26-17-39-35/QuantifiedProteins.tsv");

                            // imputes missing intensity values for each protein
                            ImputationProcess imputationProcess = new ImputationProcess();
                            imputationProcess.RunImputationProcess(allProteinInfo, samplesFileNames, meanFraction);

                            // Declaring variables which will be generated after T-Tests and Permutation Tests
                            List <double>    observedNValues  = new List <double>(); // will store observed N values
                            List <double>    permutedNValues  = new List <double>(); // will store permuted N values
                            StatisticalTests statisticalTests = new StatisticalTests();

                            // contains proteins and their observed N value, P Value and Log Fold Change
                            Dictionary <string, List <double> > allProteinObservedStatistics = new Dictionary <string, List <double> >();
                            // Creating threads for Parallelizing code
                            ThreadPool.GetMaxThreads(out int workerThreadsCount, out int ioThreadsCount);
                            int[] threads = Enumerable.Range(0, workerThreadsCount).ToArray();
                            Parallel.ForEach(threads, (i) =>
                            {
                                // Compute observed and permuted N Values for each protein using T Tests and Permutation Testing
                                for (; i < allProteinInfo.Count; i += workerThreadsCount)
                                {
                                    ProteinRowInfo proteinRowInfo = allProteinInfo[i];
                                    Dictionary <string, double> samplesintensityData = proteinRowInfo.SamplesIntensityData;

                                    List <string> firstConditionAssociatedSamples       = samplefileConditionRelation.GetValueOrDefault(firstCondition);
                                    List <string> secondConditionAssociatedSamples      = samplefileConditionRelation.GetValueOrDefault(secondCondition);
                                    List <double> proteinFirstConditionIntensityValues  = new List <double>();
                                    List <double> proteinSecondConditionIntensityValues = new List <double>();

                                    // get the protein's intensity values corresponding to the chosen pair of conditions
                                    foreach (string sampleFileName in samplesFileNames)
                                    {
                                        if (firstConditionAssociatedSamples.Contains(sampleFileName))
                                        {
                                            proteinFirstConditionIntensityValues.Add(samplesintensityData[sampleFileName]);
                                        }
                                        if (secondConditionAssociatedSamples.Contains(sampleFileName))
                                        {
                                            proteinSecondConditionIntensityValues.Add(samplesintensityData[sampleFileName]);
                                        }
                                    }

                                    // Compute observed N Values with the chosen pair of conditions using T-Tests and
                                    // store in observedNValues array
                                    List <double> proteinStatistics = statisticalTests.GetNValueUsingTTest(proteinFirstConditionIntensityValues, proteinSecondConditionIntensityValues,
                                                                                                           sOValue, false);

                                    // Compute permuted N Values with the chosen pair of conditions using T-Tests and
                                    // store in permutedNValues array
                                    List <double> proteinPermutedNavlues = statisticalTests.GetNValueUsingPermutationtests(proteinFirstConditionIntensityValues,
                                                                                                                           proteinSecondConditionIntensityValues, sOValue);

                                    // add computed original and permuted statistics for the protein
                                    lock (allProteinObservedStatistics)
                                    {
                                        // add protein and its observed N value, P Value and Log Fold Change in that order
                                        allProteinObservedStatistics.Add(proteinRowInfo.ProteinID, new List <double>()
                                        {
                                            proteinStatistics[0],
                                            proteinStatistics[1], proteinStatistics[2]
                                        });
                                        observedNValues.Add(proteinStatistics[0]);
                                        foreach (double permutedNValue in proteinPermutedNavlues)
                                        {
                                            permutedNValues.Add(permutedNValue);
                                        }
                                    }
                                }
                            });

                            // makes the permuted N values list and the observed N Values list of the same size
                            proteinBasedSignificance.ResizePermutedArray(permutedNValues, permutedNValues.Count() - observedNValues.Count());

                            // get the threshold at which we will filter out the significant proteins
                            double nValueThreshold = statisticalTests.calculateNvaluethreshold(observedNValues, permutedNValues, 0.05);

                            // determine number of signifcant proteins detected
                            int newSignificantCount = observedNValues.Count(x => x >= nValueThreshold);
                            if (newSignificantCount > maxSignificantCount)
                            {
                                maxSignificantCount = newSignificantCount;
                                proteinBasedSignificance.PrintSignificantProtein(allProteinInfo, nValueThreshold, allProteinObservedStatistics,
                                                                                 "C:/Users/Anay/Desktop/UW Madison/Smith Lab/Project 1/ConsoleApp1/ProteinBasedSignificanceModified.csv");
                                Console.WriteLine("Sig Count - " + maxSignificantCount + "meanFraction - " + meanFraction + "sOValue - "
                                                  + sOValue + "k - " + k);
                            }
                        }
                        sOValue = sOValue + 0.1;
                    }
                    sOValue      = 0.1;
                    meanFraction = meanFraction + 0.3;
                }
            }
        }
Example #2
0
        public static void Main(string[] args)
        {
            Program proteinBasedSignificance = new Program();
            // Parse the ExperimentalDesign File to get info of samples and conditions they belong to
            Dictionary <string, List <string> > samplefileConditionRelation = proteinBasedSignificance.ExpermientalDesignParser("C:/Users/Anay/Desktop/UW Madison/Smith Lab/Spectra Data/ExperimentalDesign.tsv");
            // get all conditions and pair them up for Significance classification
            List <string>         allConditions = new List <string>(samplefileConditionRelation.Keys);
            List <List <string> > allTwoConditionCombinations = proteinBasedSignificance.GenerateAllCombinationsOfTwoConditions(allConditions);

            foreach (List <string> conditionPair in allTwoConditionCombinations)
            {
                string firstCondition      = conditionPair[0];
                string secondCondition     = conditionPair[1];
                double sOValue             = 0.1;
                double meanFraction        = 0.1;
                int    maxSignificantCount = 0;

                while (meanFraction < 1)
                {
                    while (sOValue < 1)
                    {
                        for (int k = 1; k < 9; k++)
                        {
                            proteinBasedSignificance = new Program();
                            //Declaring variables which will be generated after parsing QuantifiedPeptides file
                            List <ProteinRowInfo> allProteinInfo   = new List <ProteinRowInfo>();
                            List <string>         samplesFileNames = new List <string>();
                            int maxInvalidIntensityValues          = k;
                            proteinBasedSignificance.ProteinDataParser(allProteinInfo, maxInvalidIntensityValues,
                                                                       samplesFileNames, "C:/Users/Anay/Desktop/UW Madison/Smith Lab/Spectra Data/FlashLFQ_2020-04-26-17-39-35/QuantifiedProteins.tsv");

                            // imputes missing intensity values for each protein
                            ImputationProcess imputationProcess = new ImputationProcess();
                            imputationProcess.RunImputationProcess(allProteinInfo, samplesFileNames, meanFraction);

                            // Declaring variables which will be generated after T-Tests and Permutation Tests
                            List <double>    actualNValues       = new List <double>(); // will store actual(real) N values
                            List <double>    actualPValues       = new List <double>(); // will store actual(real) P values
                            List <double>    actualLogFoldChange = new List <double>(); // will store actual(real) Log Fold Change values
                            List <double>    permutedNValues     = new List <double>(); // will store permuted(fake) N values
                            StatisticalTests statisticalTests    = new StatisticalTests();

                            // Compute actual and permuted N Values for each protein using T Tests and Permutation Testing
                            for (int i = 0; i < allProteinInfo.Count; i++)
                            {
                                ProteinRowInfo proteinRowInfo = allProteinInfo[i];
                                Dictionary <string, double> samplesintensityData = proteinRowInfo.SamplesIntensityData;

                                List <string> firstConditionAssociatedSamples       = samplefileConditionRelation.GetValueOrDefault(firstCondition);
                                List <string> secondConditionAssociatedSamples      = samplefileConditionRelation.GetValueOrDefault(secondCondition);
                                List <double> proteinFirstConditionIntensityValues  = new List <double>();
                                List <double> proteinSecondConditionIntensityValues = new List <double>();

                                // get the protein's intensity values corresponding to the chosen pair of conditions
                                foreach (string sampleFileName in samplesFileNames)
                                {
                                    if (firstConditionAssociatedSamples.Contains(sampleFileName))
                                    {
                                        proteinFirstConditionIntensityValues.Add(samplesintensityData[sampleFileName]);
                                    }
                                    if (secondConditionAssociatedSamples.Contains(sampleFileName))
                                    {
                                        proteinSecondConditionIntensityValues.Add(samplesintensityData[sampleFileName]);
                                    }
                                }

                                // Compute actual(real) N Values with the chosen pair of conditions using T-Tests and
                                // store in actualNValues array
                                statisticalTests.GetNValueUsingTTest(proteinFirstConditionIntensityValues, proteinSecondConditionIntensityValues,
                                                                     actualNValues, actualPValues, actualLogFoldChange, sOValue);

                                // Compute permuted(fake) N Values with the chosen pair of conditions using T-Tests and
                                // store in permutedNValues array
                                statisticalTests.GetNValueUsingPermutationtests(proteinFirstConditionIntensityValues, proteinSecondConditionIntensityValues,
                                                                                permutedNValues, sOValue);
                            }

                            // makes the permuted N values list and the actual N Values list of the same size
                            proteinBasedSignificance.ResizePermutedArray(permutedNValues, permutedNValues.Count() - actualNValues.Count());

                            // Copy of the actual N values which will be used when determind the N Value threshold for target FDR
                            List <double> actualNValuesCopy = new List <double>();
                            for (int i = 0; i < actualNValues.Count; i++)
                            {
                                actualNValuesCopy.Add(actualNValues[i]);
                            }
                            // get the threshold at which we will filter out the significant proteins
                            double nValueThreshold = statisticalTests.calculateNvaluethreshold(actualNValuesCopy, permutedNValues, 0.05);

                            // determine number of signifcant proteins detected
                            int newSignificantCount = actualNValues.Count(x => x >= nValueThreshold);
                            if (newSignificantCount > maxSignificantCount)
                            {
                                maxSignificantCount = newSignificantCount;
                                proteinBasedSignificance.PrintSignificantProtein(allProteinInfo, actualNValues, nValueThreshold, actualPValues,
                                                                                 actualLogFoldChange, "C:/Users/Anay/Desktop/UW Madison/Smith Lab/Project 1/ConsoleApp1/ProteinBaseedSignificance.csv");
                            }
                        }
                        sOValue = sOValue + 0.1;
                    }
                    sOValue      = 0.1;
                    meanFraction = meanFraction + 0.3;
                }
            }
        }