public TermSet(Term list) { while (list.Arity == 2) { Add(list.Arg(0)); list = list.Arg(1); } }
public void SetUnpersistent (Term t) { Term s; if ( t == null || t.Arity != 1 || (s = t.Arg (0)).Arity != 2 || s.Functor != SLASH || !s.Arg (0).IsAtom || !s.Arg (1).IsInteger ) IO.Error ("Bad argument(s) {0} for unpersistent( <predicate>/<arity>)", t); string functor = t.Arg (0).Arg (0).Functor; // do not touch case int arity = Convert.ToInt32 (t.Arg (0).Arg (1).Functor); string key = Term.Key (functor, arity); if (predefineds [key] != null) IO.Error ("Predefined predicate '{0}/{1}' cannot be declared as unpersistent", functor, arity); PredicateDescr pd = this [key]; if (pd == null || !(pd is PersistentPredDescr)) IO.Error ("Predicate '{0}/{1}' was not declared as persistent", functor, arity); else this [key] = null; }
private enum PredEnum { session, table, execproc, selproc } // table and view are treated identically #if persistent public void SetPersistent (Term t) { Term pred = null; Term db_info = null; // table( <name>) or procedure( <name>, <executable/selectable>) bool isTable = false; bool isExec = false; // executable stored procedure (as opposed to selectable) Term dbEntity = null; DbLogin dbLogin = null; ArrayList args = null; PredEnum predType; t.IsPacked = false; if (t != null) args = t.ArgumentsToArrayList (false); //for (int i = 0; i < args.Count; i++) Console.WriteLine ("args [{0}] = {1}", i, args [i]); bool OK = t != null && (args.Count == 2 || args.Count == 5) && (pred = (Term)args [0]).Arity == 2 && pred.Functor == SLASH && pred.Arg (0).IsAtom && pred.Arg (1).IsInteger; if (!OK) IO.Error ("Bad first argument '{0}' for persistent( <predicate>/<arity>, ...)", t.Arg (0)); OK = (db_info = (Term)args [1]) != null && ( (isTable = (db_info.Functor == "table" || db_info.Functor == "view")) || db_info.Functor == "procedure" || db_info.Functor == "proc") && db_info.Arity > 0 && ( (dbEntity = db_info.Arg (0)).IsAtom || dbEntity.IsString ); if (!OK) IO.Error ("Bad second argument '{0}' for persistent( ..., table/view/procedure(...))", db_info); if (isTable) { if (db_info.Arity != 1) IO.Error ("Bad second argument '{0}' for persistent( ..., table/view( <db_entity_name>))", db_info); predType = PredEnum.table; } else { string invocation; OK = (db_info.Arity == 2) && // procedure( <name>, <executable/selectable>) ( (isExec = ((invocation = db_info.Arg (1).Functor) == "executable" || invocation == "exec")) || invocation == "selectable" || invocation == "select" ); if (!OK) IO.Error ("Bad second argument '{0}' for persistent( ..., procedure( <db_entity_name>, [selectable|executable]))", t.Arg (1)); predType = isExec ? PredEnum.execproc : PredEnum.selproc; } string functor = pred.Arg (0).Functor; int arity = Convert.ToInt32 (pred.Arg (1).Functor); string index = Term.Key (functor, arity); if (predefineds [index] != null) IO.Error ("Predefined predicate '{0}/{1}' cannot be declared as persistent", functor, arity); if (args.Count == 5) { for (int i = 2; i <= 4; i++) if (!(((Term)args [i]).IsAtom || ((Term)args [i]).IsString)) IO.Error ("Argument '{0}' not an atom or string", (Term)args [i]); dbLogin = new DbLogin (((Term)args [2]).Functor, ((Term)args [3]).Functor, ((Term)args [4]).Functor); } PredicateDescr pd = this [index]; if (pd != null) // apparently already defined { string definingFile = (pd.DefiningFile == Globals.ConsultFileName) ? "this file" : pd.DefiningFile; if (!(pd is PersistentPredDescr)) IO.Error ("Predicate '{0}/{1}' cannot be declared as persistent (predicate defined in {2})", functor, arity, definingFile); } pd = SetClauseList (predType, functor, arity, null); ((PersistentPredDescr)pd).DbEntity = dbEntity.Functor; ((PersistentPredDescr)pd).DbLogin = dbLogin; }
public bool SetUndefPredAction(Term t, bool err) { Term pred = null; Term action = null; ArrayList args = null; string msg; bool result = true; t.IsPacked = false; if (t != null) args = t.ArgumentsToArrayList(false); bool OK = t != null && (args.Count == 2) && (pred = (Term)args[0]).Arity == 2 && pred.Functor == SLASH && pred.Arg(0).IsAtom && pred.Arg(1).IsInteger; if (!OK) { result = false; msg = string.Format("Bad first argument '{0}' for undef_pred_action( <predicate>/<arity>, ...)", t.Arg(0)); if (err) PrologIO.Error(msg); else PrologIO.Warning(msg); } OK = (action = (Term)args[1]) != null && (action.Functor == "fail" || // action.Functor == "succeed" || action.Functor == "error" || action.Functor == "warning"); if (!OK) { result = false; msg = string.Format("Bad second argument '{0}' for undef_pred_action( ..., fail/succeed/warning)", action); if (err) PrologIO.Error(msg); else PrologIO.Warning(msg); } if (result) { string key = Term.Key(pred.Arg(0).Functor, pred.Arg(1).Functor); actionWhenUndefined[key] = (UndefAction)Enum.Parse(typeof(UndefAction), action.Functor, false); } return result; }
public void SetDiscontiguous(Term t) { if (t == null || t.Functor != SLASH || !t.Arg(0).IsAtom || !t.Arg(1).IsInteger) PrologIO.Error("Illegal or missing argument '{0}' for discontiguous/1", t); // The predicate descriptor does not yet exist (and may even not come at all!) string key = Term.Key(t.Arg(0).Functor, t.Arg(1).Functor); //Console.WriteLine ("--- Setting discontiguous for {0} in definingFile {1}", key, Globals.ConsultFileName); isDiscontiguous[key] = "true"; }
public bool SetSpy(bool enabled, string functor, int arity, Term list) { SpyPort ports; if (list == null) ports = SpyPort.full; else { ports = SpyPort.none; string s; while (list.Arity == 2) { s = list.Arg(0).Functor; try { ports |= (SpyPort)Enum.Parse(typeof(SpyPort), s); } catch { PrologIO.Error("Illegal value '{0}'", s); } list = list.Arg(1); } } PredicateDescr pd; if (arity == -1) { bool found = false; foreach (DictionaryEntry de in predTable) if ((pd = (PredicateDescr)de.Value).Name == functor) { found = true; pd.SetSpy(enabled, pd.Name, pd.Arity, ports, !enabled); } if (!found) PrologIO.Error("Predicate does not exist: {0}", functor); return found; } else { if ((pd = (PredicateDescr)predTable[Term.Key(functor, arity)]) == null) { PrologIO.Error("Predicate does not exist: {0}/{1}", functor, arity); return false; } pd.SetSpy(enabled, functor, arity, ports, !enabled); } return true; }
protected ClauseNode GetExecutablePersistentData (Term t) { ProcParamCollection ppc = (ProcParamCollection)MetaDataCollection; if (ppc.Count != t.Arity) IO.Error ("Number of parameters ({0}) for stored procedure '{1}' does not match the arity of persistent predicate {2}/{3}", ppc.Count, dbEntity, name, arity); // get all output arguments from t and construct the corresponding SELECT-statement. DbAc.InitExecProcedure (dbEntity, inputParamCount); // set up input parameters for (int i = 0; i < inputParamCount; i++) { Term arg = t.Arg (i); string value = null; if (arg.IsAtom || arg.IsString) value = Utils.EnsureQuoted (arg.Functor); else if (arg.IsNumber) value = arg.Functor; else if (arg.IsVar) value = "null"; else IO.Error ("Illegal stored procedure input parameter {0} in persistent term {1}", arg, t); DbAc.AddExecInputParameter (i, ppc [i], value); } // set up output parameters for (int i = inputParamCount; i < ppc.Count; i++) DbAc.AddExecOutputParameter (i, ppc [i]); // perform the procedure call Term result = DbAc.DoExecProcedure (dbEntity, query); //Console.WriteLine ("GetExecutablePersistentData -- result = {0}", result); return new ClauseNode (result, null); }
// process an element( <tag>, <attributes>, <content>) private static bool ElementTermToXml(XmlTextWriter xwr, Term e) { if (e.Arity != 3) return false; // open tag xwr.WriteStartElement(e.Arg(0).ToString()); // writes ns:localName: Arg(0) *may* be ':'(ns, localName) // attributes Term le = e.Arg(1); // list with attribute-value pairs while (le != Term.NULLLIST) { Term av = le.Arg(0); // Term: attr = value xwr.WriteAttributeString(av.Arg(0).Functor, av.Arg(1).Functor); le = le.Arg(1); } // content if (!ContentTermToXml(xwr, e.Arg(2))) return false; xwr.WriteEndElement(); return true; }
public override void Retract (Term Term, VarStack stack, Term where) { StringBuilder deleteStat = new StringBuilder ("DELETE FROM " + dbEntity); TableColumnCollection tcc = (TableColumnCollection)MetaDataCollection; ListDictionary varNrs = new ListDictionary (); bool first = true; for (int i = 0; i < Term.Arity; i++) { Term arg = Term.Arg (i); string colName = tcc [i].Name; if (arg.IsAtom || arg.IsString) deleteStat.AppendFormat ("{0} {1}={2}", Conj (ref first), colName, Utils.EnsureQuoted (arg.Functor)); else if (arg.IsNumber) deleteStat.AppendFormat ("{0} {1}={2}", Conj (ref first), colName, arg.Functor); else if (arg.IsVar) { object prevColNo; // check whether value occurred as argument before (anonymous vars always have a unique varNo) if ((prevColNo = varNrs [arg.VarNo]) != null) // ... yes deleteStat.AppendFormat ("{0} {1}={2}", Conj (ref first), tcc [(int)prevColNo].Name, colName); varNrs [arg.VarNo] = i; // save for comparison with next argument(s) } else if (!arg.IsVar) IO.Error ("Illegal argument {0} for retract of persistent clause {1}", arg, Term); } if (where != null) // add the extra where-clause (if any) { // Copy the ref-table of column numers into a ref-table of corresponding column names ListDictionary varNames = new ListDictionary (); // ... in-situ modifications of Collection-values is not possible foreach (DictionaryEntry de in varNrs) varNames [(int)de.Key] = tcc [(int)de.Value].Name; deleteStat.AppendFormat ("{0} {1}", Conj (ref first), where.ToStringSql (varNames)); } if (first) IO.Warning ("Retract -- DELETE without WHERE -- will NOT be executed !!!!!!!!"); else ExecuteSqlCommand (deleteStat.ToString ()); }
public override void Assert (Term assertion) { StringBuilder insertStat = new StringBuilder ("INSERT INTO " + dbEntity + " VALUES ("); TableColumnCollection tcc = (TableColumnCollection)MetaDataCollection; bool first = true; for (int i = 0; i < assertion.Arity; i++) { Term arg = assertion.Arg (i); if (first) first = false; else insertStat.Append (", "); if (arg.IsAtom || arg.IsString) insertStat.Append (Utils.EnsureQuoted (arg.Functor)); else if (arg.IsNumber) insertStat.Append (arg.Functor); else if (arg.IsVar) { // check whether this column may be null if (!tcc [i].IsNullable) IO.Error ("Illegal attempt to insert a null-value in column '{0}' of table '{1}'", tcc [i].Name, dbEntity); insertStat.Append ("null"); } else IO.Error ("Illegal argument {0} for assert of persistent clause {1}", arg, assertion); } insertStat.Append (");"); //Console.WriteLine ("Assert -- about to ExecuteInsert {0}", insertStat.ToString ()); ExecuteSqlCommand (insertStat.ToString ()); }
private bool DoBuiltin(BI biId, out bool findFirstClause) { findFirstClause = false; //Console.WriteLine ("DoBuiltin case {0} current goal \n{1}", biId, goalNode.Term); Term term = goalNode.Term; Term t0, t1, t2, t3; TermSet ts; int n, y, m, d, h, s; int arity; string functor; char ch; bool result; switch (biId) { case BI.cut: // ! varStack.DisableChoices(term.VarNo); break; case BI.fail: return false; case BI.or: PrologIO.Error("Serious error -- or-operator (;) not handled properly"); // should not occur return false; case BI.consult: // individual file or list of files t0 = term.Arg(0); if (t0.IsList) { int lines = 0; int files = 0; while (t0.Arity == 2) { string fName = Utils.FileNameFromTerm(t0.Arg(0), ".pl"); if (fName == null) return false; lines += ps.Consult(fName); files++; t0 = t0.Arg(1); } if (files > 1) PrologIO.Message("Grand total is {0} lines", lines); ps.ResolveIndices(); break; } if (t0.IsAtom || t0.IsString) { string fName = Utils.FileNameFromTerm(t0, ".pl"); if (fName == null) return false; PrologIO.Write("--- Consulting {0} ... ", fName); ps.Consult(fName); PrologIO.WriteLine("{0} lines read", parser.LineCount); ps.ResolveIndices(); break; } return PrologIO.Error("Not a valid file name: '{0}'", t0); case BI.asserta: ps.Assert(term.Arg(0), true); // true: at beginning break; case BI.assert: case BI.assertz: ps.Assert(term.Arg(0), false); break; case BI.retract: if (ps.Retract(term.Arg(0), varStack, null)) currentCp.ClauseNode = retractClause; else { CanBacktrack(true); return false; } break; case BI.retractall: // retractall if (!ps.RetractAll(term.Arg(0), varStack)) return false; break; case BI.spy: // leash modes [call, exit, redo, fail] case BI.nospy: result = true; t0 = term.Arg(0); if (term.Arity == 2) t3 = term.Arg(1); else t3 = null; // leash list if (t0.Functor == "/" && t0.Arity == 2 && (t1 = t0.Arg(0)).IsAtom && (t2 = t0.Arg(1)).IsInteger) result = ps.SetSpy(term.Functor == "spy", t1.Functor, t2.ExprValue.AsInteger, t3); else if (t0.Arity == 0) result = ps.SetSpy(term.Functor == "spy", t0.Functor, -1, t3); if (!result) return false; if (!debug) { debug = true; PrologIO.Message("Debugging switched on"); } break; case BI.nospyall: ps.SetNoSpyAll(); break; case BI.verbose: PrologIO.Verbose = true; break; case BI.noverbose: case BI.silent: PrologIO.Verbose = false; break; case BI.trace: case BI.notrace: SetSwitch("Tracing", ref trace, term.Functor == "trace"); if (trace) debug = true; reporting = debug || xmlTrace; break; case BI.debug: case BI.nodebug: SetSwitch("Debugging", ref debug, term.Functor == "debug"); reporting = debug || xmlTrace; break; case BI.setof_init: term.Arg(0).Unify(new ObjectTerm(new TermSet(DupMode.dupIgnore)), varStack); break; case BI.setof_add: ts = (TermSet)((ObjectTerm)term.Arg(0).Value).Value; t1 = term.Arg(1); if (t1.IsVar) return false; t2 = t1.CleanUp(); ts.Insert(t2); break; case BI.setof_exit: ts = (TermSet)((ObjectTerm)term.Arg(0).Value).Value; if (ts.Count == 0) return false; // setof must fail if the Generator yields no matches term.Arg(1).Unify(ts.ToList(), varStack); break; case BI.current_op_init: int pr = -1; string op = null; OType ot = OType.noop; OType ot1; t0 = term.Arg(0); if (t0.IsInteger) pr = Convert.ToInt16(t0.ExprValue.AsInteger); else if (!t0.IsVar) return false; t1 = term.Arg(1); if (t1.IsAtom) try { ot = (OType)Enum.Parse(typeof(OType), t1.Functor); } catch { return false; } else if (!t1.IsVar) return false; t2 = term.Arg(2); if (t2.IsAtom) op = t2.Functor; else if (!t2.IsVar) return false; ArrayList ta = parser.TerminalList; ArrayList oa = new ArrayList(); int pr1; string op1; for (int i = 0; i < ta.Count; i++) // expand all operator descriptors into array oa { if (ta[i] is OperatorDescr) { OperatorDescr od = (OperatorDescr)ta[i]; if (od.IsDefinedAsPrefix(out op1, out pr1, out ot1) && (pr == -1 || pr == pr1) && (op == null || op == op1) && (ot == OType.noop || ot == ot1)) oa.Add(new OpRec(pr1, ot1, op1)); if (od.IsDefinedAsInfix(out op1, out pr1, out ot1) && (pr == -1 || pr == pr1) && (op == null || op == op1) && (ot == OType.noop || ot == ot1)) oa.Add(new OpRec(pr1, ot1, op1)); if (od.IsDefinedAsPostfix(out op1, out pr1, out ot1) && (pr == -1 || pr == pr1) && (op == null || op == op1) && (ot == OType.noop || ot == ot1)) oa.Add(new OpRec(pr1, ot1, op1)); } } if (oa.Count == 0) return false; term.Arg(3).Bind(new ObjectTerm(oa)); // bind the operator array to the penultimate argument term.Arg(4).Bind(new Term((oa.Count - 1).ToString(), FType.number)); // bind the array count to the last argument break; case BI.next_op: // '$next_op'(S, I, P, F, N) t0 = term.Arg(0); oa = (ArrayList)((ObjectTerm)term.Arg(0).Value).Value; t1 = term.Arg(1); // index of current entry in oa n = t1.ExprValue.AsInteger; OpRec oprec = (OpRec)oa[n]; term.Arg(1).Functor = (--n).ToString(); term.Arg(2).Unify(new Term(oprec.Pr.ToString(), FType.number), varStack); term.Arg(3).Unify(new Term(oprec.Fx, FType.atom), varStack); term.Arg(4).Unify(new Term(oprec.Op, FType.atom), varStack); break; case BI.version: // version(V, R) if (!term.Arg(0).Unify(new Term(Utils.MakeAtom(VERSION), FType.atom), varStack)) return false; if (!term.Arg(1).Unify(new Term(Utils.MakeAtom(RELEASE), FType.atom), varStack)) return false; break; case BI.halt: case BI.quit: case BI.abort: halted = true; break; case BI.length: // length(L, N) t0 = term.Arg(0); if (t0.HasValue) { if (!t0.IsList) return false; n = 0; while (t0.Arity == 2) { n++; t0 = t0.Arg(1); } if (!term.Arg(1).Unify(new Term(n.ToString(), FType.number), varStack)) return false; } else // create a list with N elements { t1 = term.Arg(1); if (!t1.HasValue) return false; arity = Convert.ToInt16(t1.ExprValue.AsInteger); Term[] args = new Term[arity]; t1 = Term.NULLLIST; // [] for (int i = 0; i < arity; i++) t1 = new Term(Parser.DOT, new Term(), t1, FType.comp, OType.xfy, 100); t0.Unify(t1, varStack); } break; case BI.sort: // sort(L, S) t0 = term.Arg(0); t1 = term.Arg(1); if (t0.IsList) { if (!(t1.IsList || t1.IsVar)) return false; TermSet tlist = new TermSet(t0); tlist.Sort(); if (!t1.Unify(tlist.ToList(), varStack)) return false; } else return false; break; case BI.functor: // functor(T, F, N) t0 = term.Arg(0); if (t0.HasValue) { if (!term.Arg(1).Unify(new Term(t0.Functor, 0), varStack)) return false; if (!term.Arg(2).Unify(new Term(t0.Arity.ToString(), FType.number), varStack)) return false; break; } else // Term (t0) is unbound { t1 = term.Arg(1); if (t1.HasValue) functor = t1.Functor; else return false; t2 = term.Arg(2); if (t2.HasValue) arity = Convert.ToInt16(t2.ExprValue.AsInteger); else return false; Term[] args = new Term[arity]; for (int i = 0; i < arity; i++) args[i] = new Term(); if (arity == 0) t2 = (functor == Parser.DOT) ? Term.NULLLIST : new Term(functor); else if (arity > 2) t2 = new Term(functor, args); else { OperatorDescr od = Parser.GetOperatorDescr(functor); if (od == null) t2 = new Term(functor, args); else if (arity == 1 && (od.IsDefinedAsPrefix(out functor, out pr, out ot) || od.IsDefinedAsPostfix(out functor, out pr, out ot))) t2 = new Term(functor, od, args, ot, pr); else if (arity == 2 && od.IsDefinedAsInfix(out functor, out pr, out ot)) t2 = new Term(functor, od, args, ot, pr); else t2 = new Term(functor, args); } if (!t0.Unify(t2, varStack)) return false; break; } case BI.arg: // arg( N, Term, A) t1 = term.Arg(1); n = term.Arg(1).NArgs; if (n <= 0) return false; n = Convert.ToInt32(term.Arg(0).ExprValue.AsInteger); Term arg = t1.Arg(n - 1); // N is 1-based if (arg == null || !arg.Unify(term.Arg(2), varStack)) return false; break; case BI.abolish: // abolish( X/N) t0 = term.Arg(0); result = true; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg(0).IsAtom && t0.Arg(1).IsInteger) result = ps.Abolish(t0.Arg(0).Functor, t0.Arg(1).Functor); else result = false; if (!result) return false; break; case BI.gensym: // gensym( X) t0 = new Term("v" + gensymInt++, 0); if (t0.Unify(term.Arg(0), varStack)) break; else return false; case BI.var: if (term.Arg(0).IsVar) break; return false; case BI.nonvar: if (term.Arg(0).IsNonVar) break; return false; case BI.atom_: if (term.Arg(0).IsAtom) break; return false; case BI.atomic: if (term.Arg(0).IsAtomic) break; return false; case BI.integer: if (term.Arg(0).IsInteger) break; return false; case BI.float_: if (term.Arg(0).IsFloat) break; return false; case BI.number: if (term.Arg(0).IsNumber) break; return false; case BI.compound: if (term.Arg(0).IsCompound) break; return false; case BI.list: if (term.Arg(0).IsList) break; return false; case BI.string_: if (term.Arg(0).IsString) break; return false; case BI.isdatetime: if (term.Arg(0).IsDateTime) break; return false; case BI.istimespan: if (term.Arg(0).IsTimeSpan) break; return false; case BI.is_: // X is Y t0 = new Term(term.Arg(1).ExprValue); if (term.Arg(0).Unify(t0, varStack)) break; return false; case BI.ne_uni: // X \= Y if (term.Arg(0).Unify(term.Arg(1), varStack)) return false; break; case BI.eq_num: // X =:= if (term.Arg(0).ExprValue.AsNumber == term.Arg(1).ExprValue.AsNumber) break; return false; case BI.ne_num: // X =\= Y if (term.Arg(0).ExprValue.AsNumber != term.Arg(1).ExprValue.AsNumber) break; return false; case BI.lt_num: // X < Y if (term.Arg(0).ExprValue.AsNumber < term.Arg(1).ExprValue.AsNumber) break; return false; case BI.le_num: // X =< Y if (term.Arg(0).ExprValue.AsNumber <= term.Arg(1).ExprValue.AsNumber) break; return false; case BI.gt_num: // X > Y if (term.Arg(0).ExprValue.AsNumber > term.Arg(1).ExprValue.AsNumber) break; return false; case BI.ge_num: // X >= Y if (term.Arg(0).ExprValue.AsNumber >= term.Arg(1).ExprValue.AsNumber) break; return false; case BI.eq_str: // X == Y if (term.Arg(0).CompareTo(term.Arg(1)) == 0) break; return false; case BI.ne_str: // X \== Y if (term.Arg(0).CompareTo(term.Arg(1)) != 0) break; return false; case BI.lt_ord: // X @< Y if (term.Arg(0).CompareTo(term.Arg(1)) < 0) break; return false; case BI.le_ord: // X @=< Y if (term.Arg(0).CompareTo(term.Arg(1)) <= 0) break; return false; case BI.gt_ord: // X @> Y if (term.Arg(0).CompareTo(term.Arg(1)) > 0) break; return false; case BI.ge_ord: // X @>= Y if (term.Arg(0).CompareTo(term.Arg(1)) >= 0) break; return false; case BI.univ: // X =.. Y t0 = term.Arg(0); if (t0.HasValue) // create a list representation of the lhs and unify that with the rhs { functor = t0.Functor; arity = t0.Arity; Term[] args = new Term[arity]; t1 = Term.NULLLIST; // [] for (int i = arity; i > 0; i--) t1 = new Term(Parser.DOT, t0.Arg(i - 1), t1, FType.comp, OType.xfy, 100); // [arg1, arg2, ...] t1 = new Term(Parser.DOT, new Term(functor), t1, FType.comp, OType.yfx, 0); // [functor, arg1, arg2, ...] if (!t1.Unify(term.Arg(1), varStack)) return false; break; } else // Term is unbound. Create a function representation of the list rhs, and bind that to the lhs { t1 = term.Arg(1); if (!t1.HasValue || !t1.IsList) return false; if (t1.Arg(0) == null) return false; // empty list functor = t1.Arg(0).Functor; // convert rest of list to arguments: calculate arity first t1 = t1.Arg(1); arity = 0; t2 = t1; while (t2.Arity == 2) { arity++; t2 = t2.Arg(1); } // create arguments Term[] args = new Term[arity]; for (int i = 0; i < arity; i++) { args[i] = t1.Arg(0); t1 = t1.Arg(1); } t1 = new Term(functor, args); t0.Unify(t1, varStack); break; } case BI.unifiable: // X can be unified with Y, but without variable bindings if (!term.Arg(0).Unifiable(term.Arg(1), varStack)) return false; break; case BI.see: // see(X) currentInputName = Utils.FileNameFromTerm(term.Arg(0), ".pl"); if (currentInputName == null) return false; currentInputReader = new StreamReader(currentInputName); Console.SetIn(currentInputReader); break; /* case BI.see: // see(X) // ORIGINAL VERSION, INTENDED FOR USE WITH read/1 try { currentInputName = null; while (seeParserThread.IsAlive) { Utils.WriteLine ("Waiting to abort"); seeParserThread.Interrupt (); seeParserThread.Abort (); } } catch {} currentInputName = Utils.FileNameFromTerm (term.Arg (0), ".pl"); if (currentInputName == null) return false; Utils.WriteLine ("File {0}", currentInputName); Monitor.Enter (TermMonitor); Utils.WriteLine ("see: Monitor entered"); seeParserRun = new ThreadStart (RunSeeParser); seeParserThread = new Thread (seeParserRun); seeParserThread.IsBackground = true; // nodig? seeParserThread.Start (); Utils.WriteLine ("see: Thread started"); break; */ case BI.read: // read(X) try { if (currentInputName == null) return false; // Monitor.Enter () was issued in see (F) Monitor.Pulse(TermMonitor); if (Monitor.Wait(TermMonitor, 2000)) { t0 = term.Arg(0); if (!t0.Unify(parser/*seeParser*/.ReadTerm, varStack)) return false; } else // time-out { Utils.WriteLine("read: Monitor.Wait () timed out"); return false; } } finally { if (parser/*seeParser*/.AtEndOfInput) { currentInputName = null; try { Monitor.Exit(TermMonitor); } catch { } } } break; case BI.get0: // get0(C): any character n = (char)Console.ReadKey().KeyChar; if (!term.Arg(0).Unify(new Term(n.ToString(), FType.number), varStack)) return false; break; case BI.get: // get( C): skip non-printables do { n = Console.ReadKey().KeyChar; if (!Char.IsControl((char)n)) break; // break if printable } while (true); if (!term.Arg(0).Unify(new Term(n.ToString(), FType.number), varStack)) return false; break; case BI.seek: // seek( N, C) n = Convert.ToInt32(term.Arg(0).ExprValue.AsInteger); if (!parser/*seeParser*/.StreamInChar(n, out ch)) return false; if (!term.Arg(0).Unify(new Term(ch.ToString()), varStack)) return false; break; case BI.seen: // seen currentInputName = null; if (seeParserThread != null) seeParserThread.Abort(); seeParserThread = null; // implicitly set by Abort? break; case BI.tell: // tell( F) if (!Globals.SetCurrentOutput(Utils.FileNameFromTerm(term.Arg(0), ".pl"))) return false; break; case BI.write: // write( X) PrologIO.PrologPrint(term.Arg(0)); break; case BI.writeq: // writeq( X) PrologIO.PrologPrint(term.Arg(0).ToStringQ()); break; case BI.writeln: // writeln( X) PrologIO.PrologPrint(term.Arg(0)); PrologIO.PrologPrint(Environment.NewLine); break; case BI.put: // put( C) n = Convert.ToInt32(term.Arg(0).ExprValue.AsInteger); PrologIO.PrologPrint(((char)n).ToString()); break; case BI.nl: PrologIO.PrologPrint(Environment.NewLine); break; case BI.tab: // tab( +N) ////////////////////////// testen op Int n = Convert.ToInt32(term.Arg(0).ExprValue.AsInteger); PrologIO.PrologPrint(new String(' ', n)); break; case BI.display: // like writeln ( X), but always to standard ouput Globals.SetStandardOutput(); PrologIO.PrologPrint(term.Arg(0)); PrologIO.PrologPrint(Environment.NewLine); Globals.RevertToCurrentOutput(); break; case BI.told: Globals.TryCloseCurrentOutput(); break; case BI.atom_chars: // name( ?A, ?L) case BI.name: // name( ?A, ?L) t1 = term.Arg(1); if (t1.HasValue) { FType fType; string a; if (t1.IsList) { StringBuilder sb = new StringBuilder(); while (t1.Arity == 2) { t2 = t1.Arg(0); if (!t2.IsInteger) return false; sb.Append((char)t2.ExprValue.AsInteger); t1 = t1.Arg(1); } a = Utils.MakeAtom_ic(sb.ToString(), true, out fType); if (!term.Arg(0).Unify(new Term(a, fType), varStack)) return false; } else if (t1.IsString) { a = Utils.MakeAtom_ic(t1.Functor, true, out fType); if (!term.Arg(0).Unify(new Term(a, fType), varStack)) return false; } else return false; } else // create a list containing A's character codes { t0 = term.Arg(0); if (!t0.IsAtomic) return false; char[] chars = t0.Functor.ToCharArray(); t0 = Term.NULLLIST; // [] for (int i = chars.Length - 1; i >= 0; i--) { t2 = new Term(((int)chars[i]).ToString(), FType.number); t0 = new Term(Parser.DOT, t2, t0, FType.comp, OType.xfy, 100); } t1.Unify(t0, varStack); } break; case BI.expand_term: // expand_term( +(P-->Q), -R) t0 = term.Arg(0); // P-->Q t1 = term.Arg(1); // R Term head = t0.Arg(0); TermNode body = t0.Arg(1).ToDCG(ref head); t2 = new Term(new ClauseNode(head, body)).CleanUp(); if (!t1.Unify(t2, varStack)) return false; break; case BI.numbervars: // numbervars(+X, +B, -E) t0 = term.Arg(0); t1 = term.Arg(1); t2 = term.Arg(2); if (!t1.IsInteger || t2.HasValue) return false; int k = (int)t1.ExprValue.AsInteger; t0.NumberVars(ref k, varStack); t2.Unify(new Term(k.ToString(), FType.number), varStack); break; case BI.writef0: // writef( S, L) t0 = term.Arg(0); t1 = term.Arg(1); if (!t0.IsString) return false; ArrayList al = new ArrayList(); while (t1.Arity == 2) { t2 = t1.Arg(0); string a = null; if (t2.Functor == "tree" && t2.Arity == 1) a = t2.Arg(0).ToTree(); else if (t2.Functor == "raw" && t2.Arity == 1) a = t2.Arg(0).ToRaw(); al.Add((a == null) ? t2.ToString() : a); t1 = t1.Arg(1); } PrologIO.WriteLine(t0.Functor, al.ToArray()); break; case BI.writef: // writef( S) t0 = term.Arg(0); if (!t0.IsString) return false; PrologIO.WriteLine(t0.Functor); break; case BI.username: // username( X) if (!term.Arg(0).Unify(new Term(Environment.UserName), varStack)) return false; break; case BI.shell: // shell( X [,Args]) t0 = term.Arg(0); if (!(t0.IsString || t0.IsAtom)) return false; else if (term.Arity == 1) Process.Start(t0.Functor); else if (!((t1 = term.Arg(1)).IsString || t1.IsAtom)) return false; else Process.Start(t0.Functor, Utils.Dequoted(t1.Functor)); break; /* namespace MyProcessSample { /// <summary> /// Shell for the sample. /// </summary> class MyProcess { // These are the Win32 error code for file not found or access denied. const int ERROR_FILE_NOT_FOUND =2; const int ERROR_ACCESS_DENIED = 5; /// <summary> /// Prints a file with a .doc extension. /// </summary> void PrintDoc() { Process myProcess = new Process(); try { // Get the path that stores user documents. string myDocumentsPath = Environment.GetFolderPath(Environment.SpecialFolder.Personal); myProcess.StartInfo.FileName = myDocumentsPath + "\\MyFile.doc"; myProcess.StartInfo.Verb = "Print"; myProcess.StartInfo.CreateNoWindow = true; myProcess.Start(); } catch (Win32Exception e) { if(e.NativeErrorCode == ERROR_FILE_NOT_FOUND) { Console.WriteLine(e.Message + ". Check the path."); } else if (e.NativeErrorCode == ERROR_ACCESS_DENIED) { // Note that if your word processor might generate exceptions // such as this, which are handled first. Console.WriteLine(e.Message + ". You do not have permission to print this file."); } } } */ case BI.predicatePN: // predicate( +P/N) t0 = term.Arg(0); result = true; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg(0).IsAtom && t0.Arg(1).IsInteger) result = ps.IsPredicate(t0.Arg(0).Functor, (int)t0.Arg(1).ExprValue.AsInteger); else result = false; if (!result) return false; break; case BI.predicateX: // predicate( +T) t0 = term.Arg(0); if (t0.IsVar || !ps.IsPredicate(t0.Functor, t0.NArgs)) return false; break; #if persistent case BI.retract_where: // retract(X) where Y -- for persistent predicates only. No backtracking, delete the whole shebang in one go t0 = term.Arg (0).Arg (0); // X if (!ps.IsPersistent (t0)) IO.Error ("retract/1: 'where' not allowed on non-persistent predicate {0}", t0.KbKey); t1 = term.Arg (1); // Y if (!ps.Retract (t0, varStack, t1)) return false; break; case BI.persistent: // persistent( +P/N) t0 = term.Arg (0); result = true; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg (0).IsAtom && t0.Arg (1).IsInteger) result = ps.IsPersistent (t0.Arg (0).Functor, (int)t0.Arg (1).ExprValue.AsInteger); else result = false; if (!result) return false; break; case BI.whereXY: // X where Y t0 = term.Arg (0); // X if (!ps.IsPersistent (t0)) IO.Error ("'where' not allowed on non-persistent predicate {0}", t0.KbKey); t1 = term.Arg (1); // Y // insert the goal in the argument into the current goalNode goalNode = t0.ToGoalList ().Append (goalNode.NextNode); goalNode.FindPredicateDefinition (ps, t1); return true; case BI.persistent_info: // persistent_info( X/N, L) -- give a list with a description of each column t0 = term.Arg (0); t1 = term.Arg (1); t2 = null; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg (0).IsAtom && t0.Arg (1).IsInteger) t2 = ps.PersistentInfo (t0.Arg (0).Functor, t0.Arg (1).Functor); else return false; if (!t1.Unify (t2, varStack)) return false; // t1 is output-arg break; case BI.persistent_uncache: // persistent_uncache( X/N) -- empty persistent predicate X/N's cache t0 = term.Arg (0); t1 = term.Arg (1); PredicateDescr pd; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg (0).IsAtom && t0.Arg (1).IsInteger) pd = ps [Term.Key (t0.Arg (0).Functor, t0.Arg (1).Functor)]; else return false; if (pd == null || !(pd is PersistentPredDescr)) { IO.Warning ("Predicate '{0}/{1}' was not declared as persistent", t0.Arg (0).Functor, t0.Arg (1).Functor); return false; } ((PersistentPredDescr)pd).InvalidateCache (); break; #endif case BI.ground: // ground( +T) if (!term.Arg(0).IsGround()) return false; break; case BI.today: // date( ?Y, ?M, ?D) y = DateTime.Today.Year; m = DateTime.Today.Month; d = DateTime.Today.Day; if (!term.Arg(0).Unify(new Term(y.ToString(), FType.number), varStack)) return false; if (!term.Arg(1).Unify(new Term(m.ToString(), FType.number), varStack)) return false; if (!term.Arg(2).Unify(new Term(d.ToString(), FType.number), varStack)) return false; break; case BI.now: // time( ?H, ?M, ?S) h = DateTime.Now.Hour; m = DateTime.Now.Minute; s = DateTime.Now.Second; if (!term.Arg(0).Unify(new Term(h.ToString(), FType.number), varStack)) return false; if (!term.Arg(1).Unify(new Term(m.ToString(), FType.number), varStack)) return false; if (!term.Arg(2).Unify(new Term(s.ToString(), FType.number), varStack)) return false; break; case BI.validdate: // validdate( +Y, +M, +D) t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) d = (int)t2.ExprValue.AsInteger; else return false; try { new DateTime(y, m, d); } catch { return false; } break; case BI.validtime: // validtime( +H, +M, +S) t0 = term.Arg(0); if (t0.IsInteger) h = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) s = (int)t2.ExprValue.AsInteger; else return false; try { new DateTime(2000, 1, 1, h, m, s); } catch { return false; } break; case BI.dayname: // dayname( +Y, +M, +D, ?N) DayOfWeek dow; t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) d = (int)t2.ExprValue.AsInteger; else return false; try { dow = new DateTime(y, m, d).DayOfWeek; } catch { return false; } if (!term.Arg(3).Unify(new Term(dow.ToString("G"), FType.text), varStack)) return false; break; case BI.dayofweek: // dayofweek( +Y, +M, +D, ?N) t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) d = (int)t2.ExprValue.AsInteger; else return false; try { n = (int)new DateTime(y, m, d).DayOfWeek; } catch { return false; } if (!term.Arg(3).Unify(new Term(n.ToString(), FType.number), varStack)) return false; break; case BI.dayofyear: // dayofyear( +Y, +M, +D, ?N) t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) d = (int)t2.ExprValue.AsInteger; else return false; try { n = (int)new DateTime(y, m, d).DayOfYear; } catch { return false; } if (!term.Arg(3).Unify(new Term(n.ToString(), FType.number), varStack)) return false; break; case BI.leapyear: // leapyear( +Y) t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; if (!DateTime.IsLeapYear(y)) return false; break; case BI.weekno: // weekno(+Y, +M, +D, ?N) // week number of date Y-M-D, or current week number if (term.Arity == 4) { t0 = term.Arg(0); if (t0.IsInteger) y = (int)t0.ExprValue.AsInteger; else return false; t1 = term.Arg(1); if (t1.IsInteger) m = (int)t1.ExprValue.AsInteger; else return false; t2 = term.Arg(2); if (t2.IsInteger) d = (int)t2.ExprValue.AsInteger; else return false; try { n = Utils.WeekNo(new DateTime(y, m, d)); } catch { return false; } // invalid date } else n = Utils.WeekNo(DateTime.Today); if (!term.Arg(term.Arity - 1).Unify(new Term(n.ToString(), FType.number), varStack)) return false; break; case BI.prob: if (!term.Arg(0).Unify(new Term(new Prolog.Term.NumberValue(new decimal(resProb))), varStack)) return false; break; case BI.probdebuglevel: t0 = term.Arg(0); if (t0.IsInteger) probDebugLevel = (int)t0.ExprValue.AsInteger; PrologIO.WriteLine("Probability debug level:" + probDebugLevel); break; case BI.probtimedecay: t0 = term.Arg(0); if (!t0.IsString || t0.Functor == null) return false; timeDecayEnabled = ("yes".Equals(t0.Functor.ToLower()) || "y".Equals(t0.Functor.ToLower())); PrologIO.WriteLine("Probability time decay:" + timeDecayEnabled); break; case BI.xml_term: // xml_term( [C,] ?X, ?P) converts between XML and Prolog representation string x; Term ss = null; bool settings = (term.Arity == 3); if (settings) { ss = term.Arg(0); t0 = term.Arg(1); t1 = term.Arg(2); } else { t0 = term.Arg(0); t1 = term.Arg(1); } if (t0.HasValue) { x = t0.Functor; bool inFile = (t0.Arity == 1 && x == "see"); // is it the name of a source file containing the XML structure? bool outFile = (t0.Arity == 1 && x == "tell"); // ... or the name of a destination file containing the XML structure? if (inFile || outFile) { x = Utils.FileNameFromTerm(t0.Arg(0), ".xml"); if (x == null) return false; } if (outFile) { if (!t1.HasValue) return false; if (!Node.TermToXml(ss, t1, ref x)) return false; } else { t2 = Node.XmlToTerm(x, inFile); //Console.WriteLine (t2.ToTree ()); if (!t1.Unify(t2, varStack)) return false; } break; } else if (t1.HasValue) { x = null; if (!Node.TermToXml(ss, t1, ref x)) return false; t2 = new Term(x, FType.text); if (!t0.Unify(t2, varStack)) return false; break; } else return false; case BI.listing: // listing if (!ps.ListAll(null, -1, false, true)) return false; // i.e. no predefined, all user break; case BI.listingXN: // listing( X/N) t0 = term.Arg(0); result = true; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg(0).IsAtom && t0.Arg(1).IsInteger) result = ps.ListAll(t0.Arg(0).Functor, t0.Arg(1).ExprValue.AsInteger, false, true); else result = false; if (!result) return false; break; case BI.listingX: // listing( X) -- list all predicates X/N (i.e. for each N) t0 = term.Arg(0); if (!t0.IsAtom) return false; if (!ps.ListAll(t0.Functor, -1, false, true)) return false; break; case BI.listing0: // listing0 if (!ps.ListAll(null, -1, true, false)) return false; // i.e. no user, all predefined break; case BI.listing0XN: // listing0( X/N) t0 = term.Arg(0); result = true; if (t0.Functor == "/" && t0.Arity == 2 && t0.Arg(0).IsAtom && t0.Arg(1).IsInteger) result = ps.ListAll(t0.Arg(0).Functor, t0.Arg(1).ExprValue.AsInteger, true, false); else result = false; if (!result) return false; break; case BI.listing0X: // listing0( X) t0 = term.Arg(0); if (!t0.IsAtom) return false; if (!ps.ListAll(t0.Functor, -1, true, false)) return false; break; case BI.pp_defines: // pp_defines( X) -- preprocessor symbol definitions -- mainly useful for debugging in nested calls t0 = term.Arg(0); if (!t0.IsVar) return false; t1 = Term.NULLLIST; // [] //Console.WriteLine ("Parser.PpSymbols.count = {0}", Parser.PpSymbols.Count); foreach (DictionaryEntry de in Parser.PpSymbols) t1 = new Term(Utils.MakeAtom(de.Key as string), new Term(), t1, FType.comp, OType.xfy, 100); t0.Unify(t1, varStack); break; case BI.undefineds: ps.FindUndefineds(); break; case BI.copy_term: // copy_term( X, Y) if (!term.Arg(1).Unify(term.Arg(0).CleanCopy(), varStack)) return false; break; case BI.undef_pred_action: // undef_pred_action( X/1, A) t0 = term.Arg(0); t1 = term.Arg(1); t2 = new Term(Parser.COMMA, t0, t1, FType.comp, OType.xfy, 1000); if (!ps.SetUndefPredAction(t2, false)) return false; break; case BI.clearall: // clearall ReadBuiltinPredicates(); break; case BI.spypoints: // spypoints ps.ShowSpypoints(); break; case BI.clause: // clause(Head,Body) t0 = term.Arg(0); // head t1 = term.Arg(1); // body if (!t0.HasValue) { // head is not instantiated --> no predicate specified // changed from Console.Writeln to general warning LI 2009/10/07 PrologIO.Warning("ERROR: Arguments are not sufficiently instantiated for clause/2."); return false; } // find predicate PredicateDescr pdsc = ps[t0.KbKey]; if (pdsc == null) return false; // get current clause for it TermNode tn = ((lastCp != null) && (lastCp is ClauseChoicePoint)) ? ((ClauseChoicePoint)lastCp).NextClause : pdsc.GetClauseList(t0, null); if (tn == null) return false; // prepare for redo //maybe only needed if further tn clause existent? varStack.Push(new ClauseChoicePoint(goalNode, goalNode.NextClause, tn.NextClause)); findFirstClause = true; // unify t0 with the head and t1 with the clause if (!tn.Term.Unify(t0, varStack)) return false; TermNode tm = tn.NextNode; if ((tm == null) || (tm.BuiltinId != BI.none)) { // No body for the clause. Either a fact (unify t1 with TRUE) or a buildin predicate. if (!t1.Unify(new Term(Utils.MakeAtom(tm == null ? "true" : "builtin predicate"), FType.atom), varStack)) return false; } else if (tm.NextNode == null) { // body consists of one single goal. if (!tm.Term.Unify(t1, varStack)) return false; } else { t0 = t0.TermSeq(tm); if (!t0.Unify(t1, varStack)) return false; } break; case BI.member: // member( X, L, Rest) if (!(t0 = term.Arg(0)).HasValue || !(t1 = term.Arg(1)).IsList) return false; result = false; while (t1.Arity == 2) { if (result = t0.Unify(t1.Arg(0), varStack)) break; t1 = t1.Arg(1); } currentCp.Kill(); // no backtracking to follow -> remove the choicepoint for the alternative clauses if (!result) return false; break; // BACKTRACKING VERSION // while (t1.Arity == 2) // { // if (result = t0.Unify (t1.Arg (0), varStack)) // { // if ((t0 = t1.Arg (1)).Arity == 0) // empty list // currentCp.Kill (); // no backtracking to follow -> remove the choicepoint for the alternative clauses // else // term.Arg (2).Bind (t0); // set Rest to remainder of list (for backtracking) // // break; // } // t1 = t1.Arg (1); // } case BI.append: // append( [_|_], [_|_], L) if (!(t0 = term.Arg(0)).IsList || !(t1 = term.Arg(1)).IsList) return false; currentCp.Kill(); // no backtracking to follow -> remove the choicepoint for the alternative clauses if (!term.Arg(2).Unify(t0.AppendList(t1), varStack)) return false; break; case BI.match_regex: // regex( +Source, +Pattern, ?Result, ?Options) if (!((t0 = term.Arg(0)).IsString || t0.IsAtom) || !((t1 = term.Arg(1)).IsString || !t1.IsAtom)) return false; Match[] matches = Utils.FindRegexMatches(t0.Functor, t1.Functor, false); if (matches.Length == 0) return false; //foreach (Match mt in matches) Console.WriteLine ("index {0} match {1}", mt.Index, mt.Value); t2 = Term.NULLLIST; // [] bool asAtom = true; for (int i = matches.Length - 1; i >= 0; i--) t2 = new Term(Parser.DOT, Term.MakeMatchTerm(matches[i], asAtom), t2, FType.comp, OType.xfy, 100); if (!term.Arg(2).Unify(t2, varStack)) return false; break; case BI.xmltrace: // xmltrace( X) -- send the execution tree of the next query to file X // Must be the first goal of a query, in order to avoid problems that // arise when it gets involved in backtracking. if (xmlTrace) PrologIO.Error("Execution trace is already being logged in {0}", xmlFile); else if (!(t0 = term.Arg(0)).IsAtom && !t0.IsString) PrologIO.Error("Not a valid file name: '{0}'", t0); else if (!firstGoal) { PrologIO.WriteLine("{0}*** {1}/1/2 must be the first goal of the query -- ignored{0}", Environment.NewLine, term.Functor); break; } else if ((xmlFile = Utils.FileNameFromTerm(t0, ".xml")) == null) return false; n = (term.Arity == 2) ? term.Arg(1).ExprValue.AsInteger : INF; if (n < 1) PrologIO.Error("Maximum number of elements must exceed 0"); XmlTraceOpen(term.Functor, n); break; case BI.numcols: // numcols( N) -- number of columns in the DOS-box #if mswindows if (!term.Arg(0).Unify(new Term(Utils.NumCols.ToString(), FType.number), varStack)) return false; break; #else return false; #endif case BI.userroles: #if mswindows WindowsIdentity ident = WindowsIdentity.GetCurrent(); WindowsPrincipal principal = new WindowsPrincipal(ident); //bool admin = principal.IsInRole (WindowsBuiltInRole.Administrator); PrologIO.Message("{0} belongs to: ", principal.Identity.Name.ToString()); Array wbirFields = Enum.GetValues(typeof(WindowsBuiltInRole)); foreach (object roleName in wbirFields) { try { PrologIO.Message("{0}? {1}.", roleName, principal.IsInRole((WindowsBuiltInRole)roleName)); } catch (Exception) { PrologIO.Message("Could not obtain role for RID {0}", roleName); } } #else PrologIO.Error ("userroles only available if compiler symbol mswindows is defined"); #endif break; case BI.statistics: // statistics( X, [MSec,_]) // this version actually only returns the current time t1 = term.Arg(1).Arg(0); long time = ClockTicksMSecs(); if (!t1.Unify(new Term(time.ToString(), FType.number), varStack)) return false; break; case BI.environment: // environment( X, Y) -- unify Y with atom value of environment variable X t0 = term.Arg(0); if (!t0.IsAtom) return false; string es; switch (t0.Functor.ToLower()) { case "applicationdata": es = Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData); break; case "localapplicationdata": es = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData); break; case "cookies": es = Environment.GetFolderPath(Environment.SpecialFolder.Cookies); break; case "desktopdirectory": es = Environment.GetFolderPath(Environment.SpecialFolder.DesktopDirectory); break; case "internetcache": es = Environment.GetFolderPath(Environment.SpecialFolder.InternetCache); break; case "programfiles": es = Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles); break; case "startup": es = Environment.GetFolderPath(Environment.SpecialFolder.Startup); break; case "commandline": es = Environment.CommandLine; break; case "currentdirectory": es = Environment.CurrentDirectory; break; case "machinename": es = Environment.MachineName; break; case "newline": es = Environment.NewLine; break; case "osversion": es = Environment.OSVersion.ToString(); break; case "stacktrace": es = Environment.StackTrace; break; case "systemdirectory": es = Environment.SystemDirectory; break; case "tickcount": es = Environment.TickCount.ToString(); break; case "userdomainname": es = Environment.UserDomainName; break; case "userinteractive": es = Environment.UserInteractive.ToString(); break; case "username": es = Environment.UserName; break; case "version": es = Environment.Version.ToString(); break; case "workingset": es = Environment.WorkingSet.ToString(); break; default: return false; } if (!term.Arg(1).Unify(new Term(es), varStack)) return false; break; case BI.query_timeout: t0 = term.Arg(0); if (t0.IsVar) { t0.Unify(new Term(queryTimeout.ToString(), FType.number), varStack); break; } if (!t0.IsInteger || (queryTimeout = t0.ExprValue.AsInteger) < 0) return false; break; case BI.inc_counter: // inc_counter( N) -- value of N is increased at each redo!! t0 = term.Arg(0); if (!t0.IsInteger) return false; t0.Functor = (t0.ExprValue.AsInteger + 1).ToString(); break; // case BI.vvv: // PredicateDescr p = ps [Term.Key ("value", 2)]; // p.DumpClauseList (); // break; default: return PrologIO.Error("Undefined built-in: {0}", term); } goalNode = goalNode.NextNode; if (reporting) // advance the goalList until a non-spypoint is encountered. Show spy(-exit)-info. { TermNode sp = null; while (goalNode is SpyPoint) { sp = ((SpyPoint)goalNode).SaveGoal; if (Debugger(SpyPort.exit, sp, null, false, 1)) break; goalNode = sp.NextNode; } } findFirstClause = true; return true; }
public bool Unify(Term t, VarStack varStack, bool occurCheck) { if (isUnified) return ULink.Unify(t, varStack, occurCheck); if (t.isUnified) return Unify(t.ULink, varStack, occurCheck); //Interpreter.UCount++; if (hasValue) { if (t.hasValue) { if (_functor.Equals(t._functor) && arity == t.Arity) // => two cuts will unify as well { for (int i = 0; i < arity; i++) if (!args[i].Unify(t.Arg(i), varStack, occurCheck)) return false; return true; } else return false; } // t is an unbound variable (add occur check here if deemed necessary) t.Bind(this); varStack.Push(t); } else // 'this' is an unbound variable. Add occur check here if deemed necessary { this.Bind(t); varStack.Push(this); } return true; }
private static void DCGGoal(Term t, ref TermNode body, ref Term remainder, ref bool embedded) { Term temp; if (t.IsString || t is Cut) body.Append(t); else if (t.Functor == Parser.CURL) { while (t.Arity == 2) { body.Append(t.Arg(0)); t = t.Arg(1); embedded = true; } } else if (t.IsList) { temp = new Term(); if (t == NULLLIST) t = temp; else t.SetRightmostArg(temp); if (embedded) { body.Append(new Term(Parser.EQ, remainder, t, FType.comp, OType.xfx, 700)); embedded = false; } else remainder.Bind(t); // in this case, nothing is appended to body, which may be left empty (e.g. t-->[x]) remainder = temp; } else if (t.IsAtom || t.IsCompound) { t = new DCGTerm(t, ref remainder); body.Append(t); } else if (t.IsVar) PrologIO.Error("Variable not allowed in DCG-clause: {0}", t.VarName()); else PrologIO.Error("Illegal term in DCG-clause: {0}", t); }
// xmlTerm = xml( [<pi>?], element (...)) /// Conversion of a Prolog Term to an XML-structure (in a string or in a file) public static bool TermToXml(Term settings, Term xmlTerm, ref string fileNameOrXmlString) { // get settings bool isXChars = true; // not used bool isFormat = true; bool isRemPrf = false; // not used bool isIndent = true; bool isDtdChk = false; // not used Encoding encoding = Encoding.UTF8; while (settings != null && settings != Term.NULLLIST) // traverse ... { Term e = settings.Arg(0); string setting = e.Functor; string value; // value of setting if (e.Arity == 1) value = e.Arg(0).Functor; else continue; switch (setting) { case "extended_characters": // Use the extended character entities for XHTML (default true) isXChars = (value == "true"); break; case "format": // Strip layouts when no character data appears between elements. isFormat = (value == "true"); break; case "remove_attribute_prefixes": // Remove namespace prefixes from attributes when it // is the same as the prefix of the parent element isRemPrf = (value == "true"); break; case "indent": // Indent the element content (2 spaces) isIndent = (value == "true"); break; case "encoding": // Encoding to appear in XML-declaration //encoding = Encoding.GetEncoding (value); // Strings, such as "utf-8", should work, but don't encoding = Encoding.GetEncoding(Convert.ToInt32(value)); // 65001 = "utf-8" break; case "check_dtd": // Read the referenced DTD isDtdChk = (value == "true"); break; } settings = settings.Arg(1); } bool result = false; XmlTextWriter xwr = null; StringWriter sw = new StringWriter(); try { Term t0 = xmlTerm.Arg(0); if (fileNameOrXmlString == null) // return flat XmlString { xwr = new XmlTextWriter(sw); xwr.Formatting = Formatting.None; } else // write to file { xwr = new XmlTextWriter(fileNameOrXmlString, encoding); xwr.Formatting = isFormat ? Formatting.Indented : Formatting.None; xwr.Indentation = 2; xwr.IndentChar = ' '; // default xwr.Namespaces = true; ContentTermToXml(xwr, t0); } result = ElementTermToXml(xwr, xmlTerm.Arg(1)); // top-level element } finally { if (fileNameOrXmlString == null) fileNameOrXmlString = sw.ToString(); else xwr.Close(); } return result; }
public void Assert(Term assertion, bool asserta) { assertion = assertion.CleanCopy(); // make a fresh copy Term head; TermNode body = null; if (assertion.Functor == Parser.IMPLIES) { head = assertion.Arg(0); body = assertion.Arg(1).ToGoalList(); } else head = assertion; if (head.IsVar) PrologIO.Error("Cannot assert a variable as predicate head"); string key = head.KbKey; // A predefined predicate (which may also be defined as operator) may not be redefined. // Operators ':-', ',', ';', '-->', '->' (precedence >= 1000) may also not be redefined. if (predefineds.Contains(key) || (head.Precedence >= 1000)) PrologIO.Error("assert cannot be applied to predefined predicate or system operator {0}", assertion.Index); PredicateDescr pd = (PredicateDescr)predTable[key]; #if persistent if (pd != null && pd is PersistentPredDescr) { ((PersistentPredDescr)pd).Assert (head); return; } #endif ClauseNode newC = new ClauseNode(head, body); if (pd == null) // first head { SetClauseList(PredEnum.session, head.Functor, head.Arity, newC); ResolveIndices(); } else if (asserta) // at beginning { newC.NextClause = pd.ClauseNode; // pd.ClauseNode may be null SetClauseList(PredEnum.session, head.Functor, head.Arity, newC); #if arg1index pd.CreateFirstArgIndex (); // re-create #endif } else // at end { pd.AppendToClauseList(newC); #if arg1index pd.CreateFirstArgIndex (); // re-create #endif } }
protected ClauseNode GetSelectablePersistentData (Term t, Term where) { ListDictionary varNrs = new ListDictionary (); ProcParamCollection ppc = (ProcParamCollection)MetaDataCollection; bool first; int varNo; if (ppc.Count != t.Arity) IO.Error ("Number of parameters ({0}) for stored procedure '{1}' does not match the arity of persistent predicate {2}/{3}", ppc.Count, dbEntity, name, arity); // get all arguments from t and construct the corresponding SELECT-statement. // The arguments must be either atomic or var, but may not be compound (apart from date(...)) StringBuilder fetchStat = new StringBuilder ("SELECT NULL"); for (int i = inputParamCount; i < ppc.Count; i++) fetchStat.AppendFormat (", {0}", ppc [i].Name); // output parameters only fetchStat.Append (" FROM "); int keyStart = fetchStat.Length; // Dataset key, to test whether the query result has already been executed before fetchStat.Append (dbEntity); // append stored procedure input parameters (if any) if (inputParamCount > 0) { fetchStat.Append (" ("); varNo = 0; first = true; for (int i = 0; i < inputParamCount; i++) { if (first) first = false; else fetchStat.Append (", "); Term tt = t.Arg (varNo++); if (tt.IsAtom || tt.IsString) fetchStat.Append ("'" + tt.Functor + "'"); else if (tt.IsNumber) fetchStat.Append (tt.Functor); else IO.Error ("Illegal stored procedure input parameter {0} in persistent term {1}", tt, t); } fetchStat.Append (")"); } // construct a condition in a where-clause for each instantiated (output) argument of t varNo = 0; // t.Arg (0) is first output parameter (if any) first = true; for (int colNo = inputParamCount; colNo < ppc.Count; colNo++) { string colName = ppc [colNo].Name; Term tt = t.Arg (varNo); if (tt.IsVar) { object prevColNo; // check whether value occurred as argument before (anonymous vars always have a unique varNo) if ((prevColNo = varNrs [tt.VarNo]) != null) // ... yes fetchStat.AppendFormat ("{0} {1}={2}", Conj (ref first), ppc [(int)prevColNo].Name, colName); varNrs [tt.VarNo] = colNo; // save for comparison with next argument(s) } else if (!(tt.IsAtom || tt.IsString || tt.IsNumber)) IO.Error ("Illegal argument {0} in persistent term {1}", tt, t); varNo++; } // add the extra where-clause (if any) if (where != null) { // Copy the ref-table of column numers into a ref-table of corresponding column names ListDictionary varNames = new ListDictionary (); // ... in-situ modifications of Collection-values is not possible foreach (DictionaryEntry de in varNrs) varNames [(int)de.Key] = ppc [(int)de.Value].Name; fetchStat.AppendFormat ("{0} {1}", Conj (ref first), where.ToStringSql (varNames)); } fetchStat.Append (";"); //Console.WriteLine ("ProcedurePredDescr.GetPersistentData -- fetchStat = \"{0}\"", fetchStat); DataRowCollection drc = GetResultsetForSelect (fetchStat.ToString (), keyStart); // get the data return (drc == null || drc.Count == 0) ? null : new PersistentClauseNode (drc, 0, this); }
// process an element content, i.e. a list private static bool ContentTermToXml(XmlTextWriter xwr, Term list) { while (list != Term.NULLLIST) // traverse ... { Term e = list.Arg(0); string type = e.Functor; switch (type) { case "xmldecl": xwr.WriteStartDocument(true); break; case "element": if (!ElementTermToXml(xwr, e)) return false; break; case "text": xwr.WriteString(e.Arg(0).Functor); break; case "cdata": xwr.WriteCData(e.Arg(0).Functor); break; case "comment": xwr.WriteComment(e.Arg(0).Functor); break; case "instructions": xwr.WriteProcessingInstruction(e.Arg(0).Functor, e.Arg(1).ToString()); break; default: PrologIO.Error("ContentTermToXml -- unrecognized type '{0}'", type); break; } list = list.Arg(1); } return true; }