Example #1
0
 static HuffmanTree()
 {
     // construct the static literal tree and distance tree
     staticLiteralLengthTree = new HuffmanTree(GetStaticLiteralTreeLength());
     staticDistanceTree      = new HuffmanTree(GetStaticDistanceTreeLength());
 }
Example #2
0
        //Each block of compressed data begins with 3 header bits
        // containing the following data: 
        //    first bit       BFINAL
        //    next 2 bits     BTYPE
        // Note that the header bits do not necessarily begin on a byte
        // boundary, since a block does not necessarily occupy an integral 
        // number of bytes.
        // BFINAL is set if and only if this is the last block of the data 
        // set. 
        // BTYPE specifies how the data are compressed, as follows:
        //    00 - no compression 
        //    01 - compressed with fixed Huffman codes
        //    10 - compressed with dynamic Huffman codes
        //    11 - reserved (error)
        // The only difference between the two compressed cases is how the 
        // Huffman codes for the literal/length and distance alphabets are
        // defined. 
        // 
        // This function returns true for success (end of block or output window is full,)
        // false if we are short of input 
        //
        private bool Decode()
        {
            bool eob = false;
            bool result = false;

            if (Finished())
            {
                return true;
            }

            if (_usingGzip)
            {
                if (_state == InflaterState.ReadingGZIPHeader)
                {
                    if (!_gZipDecoder.ReadGzipHeader())
                    {
                        return false;
                    }
                    _state = InflaterState.ReadingBFinal;
                }
                else if (_state == InflaterState.StartReadingGZIPFooter || _state == InflaterState.ReadingGZIPFooter)
                {
                    if (!_gZipDecoder.ReadGzipFooter())
                        return false;

                    _state = InflaterState.VerifyingGZIPFooter;
                    return true;
                }
            }

            if (_state == InflaterState.ReadingBFinal)
            {
                // reading bfinal bit
                // Need 1 bit 
                if (!_input.EnsureBitsAvailable(1))
                    return false;

                _bfinal = _input.GetBits(1);
                _state = InflaterState.ReadingBType;
            }

            if (_state == InflaterState.ReadingBType)
            {
                // Need 2 bits 
                if (!_input.EnsureBitsAvailable(2))
                {
                    _state = InflaterState.ReadingBType;
                    return false;
                }

                blockType = (BlockType) _input.GetBits(2);
                if (blockType == BlockType.Dynamic)
                {
                    _state = InflaterState.ReadingNumLitCodes;
                }
                else if (blockType == BlockType.Static)
                {
                    _literalLengthTree = HuffmanTree.StaticLiteralLengthTree;
                    _distanceTree = HuffmanTree.StaticDistanceTree;
                    _state = InflaterState.DecodeTop;
                }
                else if (blockType == BlockType.Uncompressed)
                {
                    _state = InflaterState.UncompressedAligning;
                }
                else
                {
                    throw new InvalidDataException("SR.UnknownBlockType");
                }
            }

            if (blockType == BlockType.Dynamic)
            {
                if (_state < InflaterState.DecodeTop)
                {
                    // we are reading the header 
                    result = DecodeDynamicBlockHeader();
                }
                else
                {
                    result = DecodeBlock(out eob); // this can returns true when output is full 
                }
            }
            else if (blockType == BlockType.Static)
            {
                result = DecodeBlock(out eob);
            }
            else if (blockType == BlockType.Uncompressed)
            {
                result = DecodeUncompressedBlock(out eob);
            }
            else
            {
                throw new InvalidDataException("SR.UnknownBlockType");
            }

            //
            // If we reached the end of the block and the block we were decoding had 
            // bfinal=1 (final block)
            //
            if (eob && (_bfinal != 0))
            {
                if (_usingGzip)
                    _state = InflaterState.StartReadingGZIPFooter;
                else
                    _state = InflaterState.Done;
            }
            return result;
        }
Example #3
0
        // Format of the dynamic block header:
        //      5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286) 
        //      5 Bits: HDIST, # of Distance codes - 1        (1 - 32)
        //      4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19) 
        // 
        //      (HCLEN + 4) x 3 bits: code lengths for the code length
        //          alphabet given just above, in the order: 16, 17, 18, 
        //          0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
        //
        //          These code lengths are interpreted as 3-bit integers
        //          (0-7); as above, a code length of 0 means the 
        //          corresponding symbol (literal/length or distance code
        //          length) is not used. 
        // 
        //      HLIT + 257 code lengths for the literal/length alphabet,
        //          encoded using the code length Huffman code 
        //
        //       HDIST + 1 code lengths for the distance alphabet,
        //          encoded using the code length Huffman code
        // 
        // The code length repeat codes can cross from HLIT + 257 to the
        // HDIST + 1 code lengths.  In other words, all code lengths form 
        // a single sequence of HLIT + HDIST + 258 values. 
        private bool DecodeDynamicBlockHeader()
        {
            switch (_state)
            {
                case InflaterState.ReadingNumLitCodes:
                    _literalLengthCodeCount = _input.GetBits(5);
                    if (_literalLengthCodeCount < 0)
                    {
                        return false;
                    }
                    _literalLengthCodeCount += 257;
                    _state = InflaterState.ReadingNumDistCodes;
                    goto case InflaterState.ReadingNumDistCodes;

                case InflaterState.ReadingNumDistCodes:
                    _distanceCodeCount = _input.GetBits(5);
                    if (_distanceCodeCount < 0)
                    {
                        return false;
                    }
                    _distanceCodeCount += 1;
                    _state = InflaterState.ReadingNumCodeLengthCodes;
                    goto case InflaterState.ReadingNumCodeLengthCodes;

                case InflaterState.ReadingNumCodeLengthCodes:
                    _codeLengthCodeCount = _input.GetBits(4);
                    if (_codeLengthCodeCount < 0)
                    {
                        return false;
                    }
                    _codeLengthCodeCount += 4;
                    _loopCounter = 0;
                    _state = InflaterState.ReadingCodeLengthCodes;
                    goto case InflaterState.ReadingCodeLengthCodes;

                case InflaterState.ReadingCodeLengthCodes:
                    while (_loopCounter < _codeLengthCodeCount)
                    {
                        int bits = _input.GetBits(3);
                        if (bits < 0)
                        {
                            return false;
                        }
                        _codeLengthTreeCodeLength[CodeOrder[_loopCounter]] = (byte) bits;
                        ++_loopCounter;
                    }

                    for (int i = _codeLengthCodeCount; i < CodeOrder.Length; i++)
                    {
                        _codeLengthTreeCodeLength[CodeOrder[i]] = 0;
                    }

                    // create huffman tree for code length 
                    _codeLengthTree = new HuffmanTree(_codeLengthTreeCodeLength);
                    _codeArraySize = _literalLengthCodeCount + _distanceCodeCount;
                    _loopCounter = 0; // reset loop count

                    _state = InflaterState.ReadingTreeCodesBefore;
                    goto case InflaterState.ReadingTreeCodesBefore;

                case InflaterState.ReadingTreeCodesBefore:
                case InflaterState.ReadingTreeCodesAfter:
                    while (_loopCounter < _codeArraySize)
                    {
                        if (_state == InflaterState.ReadingTreeCodesBefore)
                        {
                            if ((_lengthCode = _codeLengthTree.GetNextSymbol(_input)) < 0)
                            {
                                return false;
                            }
                        }

                        // The alphabet for code lengths is as follows: 
                        //  0 - 15: Represent code lengths of 0 - 15 
                        //  16: Copy the previous code length 3 - 6 times.
                        //  The next 2 bits indicate repeat length 
                        //         (0 = 3, ... , 3 = 6)
                        //      Example:  Codes 8, 16 (+2 bits 11),
                        //                16 (+2 bits 10) will expand to
                        //                12 code lengths of 8 (1 + 6 + 5) 
                        //  17: Repeat a code length of 0 for 3 - 10 times.
                        //    (3 bits of length) 
                        //  18: Repeat a code length of 0 for 11 - 138 times 
                        //    (7 bits of length)
                        if (_lengthCode <= 15)
                        {
                            _codeList[_loopCounter++] = (byte) _lengthCode;
                        }
                        else
                        {
                            if (!_input.EnsureBitsAvailable(7))
                            {
                                // it doesn't matter if we require more bits here 
                                _state = InflaterState.ReadingTreeCodesAfter;
                                return false;
                            }

                            int repeatCount;
                            if (_lengthCode == 16)
                            {
                                if (_loopCounter == 0)
                                {
                                    // can't have "prev code" on first code
                                    throw new InvalidDataException();
                                }

                                byte previousCode = _codeList[_loopCounter - 1];
                                repeatCount = _input.GetBits(2) + 3;

                                if (_loopCounter + repeatCount > _codeArraySize)
                                {
                                    throw new InvalidDataException();
                                }

                                for (int j = 0; j < repeatCount; j++)
                                {
                                    _codeList[_loopCounter++] = previousCode;
                                }
                            }
                            else if (_lengthCode == 17)
                            {
                                repeatCount = _input.GetBits(3) + 3;

                                if (_loopCounter + repeatCount > _codeArraySize)
                                {
                                    throw new InvalidDataException();
                                }

                                for (int j = 0; j < repeatCount; j++)
                                {
                                    _codeList[_loopCounter++] = 0;
                                }
                            }
                            else
                            {
                                // code == 18
                                repeatCount = _input.GetBits(7) + 11;

                                if (_loopCounter + repeatCount > _codeArraySize)
                                {
                                    throw new InvalidDataException();
                                }

                                for (int j = 0; j < repeatCount; j++)
                                {
                                    _codeList[_loopCounter++] = 0;
                                }
                            }
                        }
                        _state = InflaterState.ReadingTreeCodesBefore; // we want to read the next code. 
                    }
                    break;

                default:
                    Debug.Assert(false, "check why we are here!");
                    throw new InvalidDataException("SR.UnknownState");
            }

            var literalTreeCodeLength = new byte[HuffmanTree.MaxLiteralTreeElements];
            var distanceTreeCodeLength = new byte[HuffmanTree.MaxDistTreeElements];

            // Create literal and distance tables 
            Array.Copy(_codeList, literalTreeCodeLength, _literalLengthCodeCount);
            Array.Copy(_codeList, _literalLengthCodeCount, distanceTreeCodeLength, 0, _distanceCodeCount);

            // Make sure there is an end-of-block code, otherwise how could we ever end?
            if (literalTreeCodeLength[HuffmanTree.EndOfBlockCode] == 0)
            {
                throw new InvalidDataException();
            }

            _literalLengthTree = new HuffmanTree(literalTreeCodeLength);
            _distanceTree = new HuffmanTree(distanceTreeCodeLength);
            _state = InflaterState.DecodeTop;
            return true;
        }
Example #4
0
 static HuffmanTree()
 {
     // construct the static literal tree and distance tree 
     staticLiteralLengthTree = new HuffmanTree(GetStaticLiteralTreeLength());
     staticDistanceTree = new HuffmanTree(GetStaticDistanceTreeLength());
 }