Example #1
0
        /**
         * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
         * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
         * than one point is to be normalized, this method will generally be more efficient than
         * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
         * each z coordinate is scaled by this value prior to normalization (but only one
         * actual multiplication is needed).
         *
         * @param points
         *            An array of points that will be updated in place with their normalized versions,
         *            where necessary
         * @param off
         *            The start of the range of points to normalize
         * @param len
         *            The length of the range of points to normalize
         * @param iso
         *            The (optional) z-scaling factor - can be null
         */
        public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
        {
            CheckPoints(points, off, len);

            switch (this.CoordinateSystem)
            {
            case ECCurve.COORD_AFFINE:
            case ECCurve.COORD_LAMBDA_AFFINE:
            {
                if (iso != null)
                {
                    throw new ArgumentException("not valid for affine coordinates", "iso");
                }

                return;
            }
            }

            /*
             * Figure out which of the points actually need to be normalized
             */
            ECFieldElement[] zs      = new ECFieldElement[len];
            int[]            indices = new int[len];
            int count = 0;

            for (int i = 0; i < len; ++i)
            {
                ECPoint p = points[off + i];
                if (null != p && (iso != null || !p.IsNormalized()))
                {
                    zs[count]        = p.GetZCoord(0);
                    indices[count++] = off + i;
                }
            }

            if (count == 0)
            {
                return;
            }

            ECAlgorithms.MontgomeryTrick(zs, 0, count, iso);

            for (int j = 0; j < count; ++j)
            {
                int index = indices[j];
                points[index] = points[index].Normalize(zs[j]);
            }
        }
Example #2
0
 public override ECPoint ImportPoint(ECPoint p)
 {
     if (this != p.Curve && this.CoordinateSystem == 2 && !p.IsInfinity)
     {
         switch (p.Curve.CoordinateSystem)
         {
         case 2:
         case 3:
         case 4:
             return(new FpPoint(this, this.FromBigInteger(p.RawXCoord.ToBigInteger()), this.FromBigInteger(p.RawYCoord.ToBigInteger()), new ECFieldElement[]
             {
                 this.FromBigInteger(p.GetZCoord(0).ToBigInteger())
             }, p.IsCompressed));
         }
     }
     return(base.ImportPoint(p));
 }
Example #3
0
        public override ECPoint ImportPoint(ECPoint p)
        {
            if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
            {
                switch (p.Curve.CoordinateSystem)
                {
                case COORD_JACOBIAN:
                case COORD_JACOBIAN_CHUDNOVSKY:
                case COORD_JACOBIAN_MODIFIED:
                    return(new FpPoint(this,
                                       FromBigInteger(p.RawXCoord.ToBigInteger()),
                                       FromBigInteger(p.RawYCoord.ToBigInteger()),
                                       new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) }));

                default:
                    break;
                }
            }

            return(base.ImportPoint(p));
        }
Example #4
0
        public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
        {
            this.CheckPoints(points, off, len);
            int coordinateSystem = this.CoordinateSystem;

            if (coordinateSystem == 0 || coordinateSystem == 5)
            {
                if (iso != null)
                {
                    throw new ArgumentException("not valid for affine coordinates", "iso");
                }
                return;
            }
            else
            {
                ECFieldElement[] array  = new ECFieldElement[len];
                int[]            array2 = new int[len];
                int num = 0;
                for (int i = 0; i < len; i++)
                {
                    ECPoint eCPoint = points[off + i];
                    if (eCPoint != null && (iso != null || !eCPoint.IsNormalized()))
                    {
                        array[num]    = eCPoint.GetZCoord(0);
                        array2[num++] = off + i;
                    }
                }
                if (num == 0)
                {
                    return;
                }
                ECAlgorithms.MontgomeryTrick(array, 0, num, iso);
                for (int j = 0; j < num; j++)
                {
                    int num2 = array2[j];
                    points[num2] = points[num2].Normalize(array[j]);
                }
                return;
            }
        }
Example #5
0
        /**
         * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
         * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
         * than one point is to be normalized, this method will generally be more efficient than
         * normalizing each point separately.
         *
         * @param points
         *            An array of points that will be updated in place with their normalized versions,
         *            where necessary
         */
        public virtual void NormalizeAll(ECPoint[] points)
        {
            CheckPoints(points);

            if (this.CoordinateSystem == ECCurve.COORD_AFFINE)
            {
                return;
            }

            /*
             * Figure out which of the points actually need to be normalized
             */
            ECFieldElement[] zs      = new ECFieldElement[points.Length];
            int[]            indices = new int[points.Length];
            int count = 0;

            for (int i = 0; i < points.Length; ++i)
            {
                ECPoint p = points[i];
                if (null != p && !p.IsNormalized())
                {
                    zs[count]        = p.GetZCoord(0);
                    indices[count++] = i;
                }
            }

            if (count == 0)
            {
                return;
            }

            ECAlgorithms.MontgomeryTrick(zs, 0, count);

            for (int j = 0; j < count; ++j)
            {
                int index = indices[j];
                points[index] = points[index].Normalize(zs[j]);
            }
        }
Example #6
0
        public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
        {
            this.CheckPoints(points, off, len);
            switch (this.CoordinateSystem)
            {
            case 0:
            case 5:
                if (iso != null)
                {
                    throw new ArgumentException("not valid for affine coordinates", "iso");
                }
                return;
            }
            ECFieldElement[] zs       = new ECFieldElement[len];
            int[]            numArray = new int[len];
            int index = 0;

            for (int i = 0; i < len; i++)
            {
                ECPoint point = points[off + i];
                if ((point != null) && ((iso != null) || !point.IsNormalized()))
                {
                    zs[index]         = point.GetZCoord(0);
                    numArray[index++] = off + i;
                }
            }
            if (index != 0)
            {
                ECAlgorithms.MontgomeryTrick(zs, 0, index, iso);
                for (int j = 0; j < index; j++)
                {
                    int num5 = numArray[j];
                    points[num5] = points[num5].Normalize(zs[j]);
                }
            }
        }
        public override ECPoint ImportPoint(ECPoint p)
        {
            if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
            {
                switch (p.Curve.CoordinateSystem)
                {
                    case COORD_JACOBIAN:
                    case COORD_JACOBIAN_CHUDNOVSKY:
                    case COORD_JACOBIAN_MODIFIED:
                        return new FpPoint(this,
                            FromBigInteger(p.RawXCoord.ToBigInteger()),
                            FromBigInteger(p.RawYCoord.ToBigInteger()),
                            new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) },
                            p.IsCompressed);
                    default:
                        break;
                }
            }

            return base.ImportPoint(p);
        }
Example #8
0
 protected virtual ECFieldElement GetDenominator(int coordinateSystem, ECPoint p)
 {
     switch (coordinateSystem)
     {
         case ECCurve.COORD_HOMOGENEOUS:
         case ECCurve.COORD_LAMBDA_PROJECTIVE:
         case ECCurve.COORD_SKEWED:
             return p.GetZCoord(0);
         case ECCurve.COORD_JACOBIAN:
         case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
         case ECCurve.COORD_JACOBIAN_MODIFIED:
             return p.GetZCoord(0).Square();
         default:
             return null;
     }
 }