public АverageMethod(XLSReader Reader) { Init(Reader); NetWorker = new NeuroNetWorker("AverageMethod" + Reader.FileName, consider.Column, edge: false); statCount = 0; statAll = 0; }
public Case(XLSReader Reader) { objPreparator = new Preparator(); Init(Reader); NetWorker = new NeuroNetWorker("CaseMethod" + Reader.FileName, objPreparator.Count, edge: false); P = 0; N = 0; TP = 0; FP = 0; TN = 0; FN = 0; }
public Simple(XLSReader Reader) { foreach (var obj in Reader.ReadHeaders(4)) { continue; } countParams = 20; Valuyer = new Dictionary <int, Dictionary <string, int> >(); NetWorker = new NeuroNetWorker("SimpleMethod" + Reader.FileName, countParams, edge: false); P = 0; N = 0; TP = 0; FP = 0; TN = 0; FN = 0; }
/// <summary> /// Подготавливает входные данные для нейронных /// сетей и сами нейронные сети /// </summary> public void PrepareValue() { if (type == TypeBLO.String) { PrepareString(); netWorker = new NeuroNetWorker(BLObj, map.Count); } if (type == TypeBLO.Number) { netWorker = new NeuroNetWorker(BLObj, 5, lowerEdge: minValue, upperEdge: maxValue); } if (type == TypeBLO.Boolean) { PrepareBoolean(); netWorker = new NeuroNetWorker(BLObj, 3); } if (type == TypeBLO.Percent) { netWorker = new NeuroNetWorker(BLObj, 5, lowerEdge: 0, upperEdge: 100); } }