public void RBFNetType(object sender, EventArgs e) { loadSaveTasksForm.Net = net = new RBFNeuralNet(); type = NeuronNetType.RBF; this.Net = net; Refresh(); }
public void ShuffleNetType(object sender, EventArgs e) { loadSaveTasksForm.Net = net = new LinearSystemTask(); type = NeuronNetType.SHUFFLE; this.Net = net; Refresh(); }
public void HopfieldType(object sender, EventArgs e) { loadSaveTasksForm.Net = net = new HopfieldNeuronNet(); type = NeuronNetType.HOPFIELD; this.Net = net; Refresh(); }
public void KohonenType(object sender, EventArgs e) { loadSaveTasksForm.Net = net = new KohonenNeuronNet(); type = NeuronNetType.KOHONEN; this.Net = net; Refresh(); }
public void LinearNetType(object sender, EventArgs e) { loadSaveTasksForm.Net = net = new LinearNeuronNet(); type = NeuronNetType.LINEAR; this.Net = net; Refresh(); }
private void ExportExcel(object sender, EventArgs e) { OpenFileDialog openDlg = new OpenFileDialog(); openDlg.Filter = "CSV Files (.csv)| *.csv|All files (.)| *."; if (openDlg.ShowDialog() == DialogResult.OK) { File.Delete(@"NodeJS\test.json"); Process.Start("cmd", @"/C cd " + Application.StartupPath + "/NodeJS & node ./csvtojson " + openDlg.FileName); Thread.Sleep(3000); string json = File.ReadAllText(@"NodeJS\test.json"); ITraceWriter writer = new MemoryTraceWriter(); JsonSerializerSettings serSettings = new JsonSerializerSettings(); serSettings.ReferenceLoopHandling = ReferenceLoopHandling.Ignore; serSettings.ContractResolver = new CamelCasePropertyNamesContractResolver(); serSettings.TraceWriter = writer; //var neuronNet = JsonConvert.DeserializeObject<List<string>>(json.ToString(), serSettings); //var neuronNet = JsonConvert.DeserializeObject<List<NeuronNet>>(json.ToString(), serSettings); var test = JsonConvert.DeserializeObject <List <Root2> >(json.ToString(), serSettings); net = AcceptJson(test[0]); net.AccessChangeNet = true; //Console.WriteLine(writer); } }
public StudyPairModifier(List <StudyPair> pairs, NeuronNet net) { InitializeComponent(); studyPairs = pairs; neuronNet = net; ShowStudyPairs(); }
public StudyFunctionForm(NeuronNet net) { InitializeComponent(); this.net = net; drawer = new Drawer(pictureBox1, pictureBox1.ClientRectangle); drawer.GraphicBounds = new PointF(0, net.EraCount); drawer.AddGraphic(1, net.StudyFunction, "Расписание обучения", typeView.Line); drawer.Redraw(); }
public NetOptions(NeuronNet Net) { InitializeComponent(); net = Net; inputsCount.Value = Net.InputsCount; groupsCount.Value = Net.NeuronGroupsCount; groupNumber.Value = 1; neuronsCount.Value = Net.NeuronGroups[0].Neurons.Count; }
//public RegressionForm(FunctionType type , LinearNeuronNet net) public RegressionForm(FunctionType type, NeuronNet net) { InitializeComponent(); this.net = net; this.type = type; mainFunction = new Graphics3D.Function3D(1, Function3D); missFunction = new Graphics3D.Function3D(2, Function3DWithMiss); netFunction = new Graphics3D.Function3D(3, Function3DNet); CreateVisualisationControl(); }
private void DeserializeNet(object sender, EventArgs e) { BinaryFormatter bf = new BinaryFormatter(); OpenFileDialog openDlg = new OpenFileDialog(); if (openDlg.ShowDialog() == DialogResult.OK) { FileStream fs = new FileStream(openDlg.FileName, FileMode.Open, FileAccess.Read); Net = (NeuronNet)bf.Deserialize(fs); net.AccessChangeNet = true; fs.Close(); } }
//Загрузка private void DeserializeNet(object sender, EventArgs e) { BinaryFormatter bf = new BinaryFormatter(); //OpenFileDialog openDlg = new OpenFileDialog(); LoadMenu loadMenu = new LoadMenu(); loadMenu.indexSave = 0; loadMenu.ShowDialog(); if (loadMenu.fileName != null) { string query = "select File from SaveFiles where Name=" + "\"" + loadMenu.fileName + "\""; databaseSQLite.OpenConnection(); SQLiteCommand myCommand = new SQLiteCommand(query, databaseSQLite.myConnection); List <SaveFiles> list = new List <SaveFiles>(); using (SQLiteDataReader reader = myCommand.ExecuteReader()) { if (reader.HasRows) // если есть данные { while (reader.Read()) // построчно считываем данные { byte[] data = (byte[])reader.GetValue(0); SaveFiles saveFile1 = new SaveFiles(data); list.Add(saveFile1); } } } databaseSQLite.CloseConnection(); using (FileStream fd = new FileStream("temp.dat", FileMode.OpenOrCreate)) { fd.Write(list[0].File, 0, list[0].File.Length); } FileStream fs = new FileStream("temp.dat", FileMode.Open, FileAccess.Read); Net = (NeuronNet)bf.Deserialize(fs); net.AccessChangeNet = true; fs.Close(); } }
public ParameterListForm(NeuronNet net) { InitializeComponent(); this.net = net; FillParameterGrid(); }
private NeuronNet AcceptJson(Root2 root2) { NeuronNet net = new NeuronNet(); for (int i = 0; i < root2.inputss.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.inputss[i].Position.X; pointF.Y = (float)root2.inputss[i].Position.Y; NeuronInput neuron = new NeuronInput((float)root2.inputss[i].value, root2.inputss[i].Name, pointF); neuron.positionChanged = root2.inputss[i].positionChanged; neuron.wasPainted = root2.inputss[i].wasPainted; net.inputss.Add(neuron); } for (int i = 0; i < root2.NeuronGroups.Count; i++) { NeuronGroup neurongroup = new NeuronGroup(); neurongroup.Neurons = root2.NeuronGroups[i].Neurons; neurongroup.SecondActivate = root2.NeuronGroups[i].SecondActivate; neurongroup.SumForSoftMax = (float)root2.NeuronGroups[i].SumForSoftMax; neurongroup.allNeuronsWasPainted = root2.NeuronGroups[i].allNeuronsWasPainted; net.NeuronGroups.Add(neurongroup); } for (int i = 0; i < root2.studyPairss.Count; i++) { StudyPair studyPair = new StudyPair(); for (int j = 0; j < root2.studyPairss[i].inputs.Count; j++) { studyPair.inputs.Add((float)root2.studyPairss[i].inputs[j]); } for (int j = 0; j < root2.studyPairss[i].quits.Count; j++) { studyPair.quits.Add((float)root2.studyPairss[i].quits[j]); } for (int j = 0; j < root2.studyPairss[i].realQuits.Count; j++) { studyPair.realQuits.Add((float)root2.studyPairss[i].realQuits[j]); } net.studyPairss.Add(studyPair); } net.E = (float)root2.E; net.moment = (float)root2.moment; for (int i = 0; i < root2.errors.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.errors[i].X; pointF.Y = (float)root2.errors[i].Y; net.errors.Add(pointF); } for (int i = 0; i < root2.normalizedErrors.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.normalizedErrors[i].X; pointF.Y = (float)root2.normalizedErrors[i].Y; net.normalizedErrors.Add(pointF); } net.EraCount = root2.EraCount; net.currentSelection = new NeuronGroup(0); net.recognitionResults = new List <RecognitionResult>(); net.StudyPairsLoaded = root2.StudyPairsLoaded; net.InputsSum = (float)root2.InputsSum; net.allInputsWasPainted = root2.allInputsWasPainted; net.minError = (float)root2.minError; net.NormalizeOutputValue = (float)root2.NormalizeOutputValue; net.biasX = (float[])root2.biasX; net.biasY = (float[])root2.biasY; net.scaleX = (float[])root2.scaleX; net.scaleY = (float[])root2.scaleY; net.StudyLimit = (float)root2.StudyLimit; net.AccessChangeNet = root2.AccessChangeNet; return(net); }