Example #1
0
 OutputNeuron[] denseOutputLayer(int numberOfNeurons, int numberOfInputOfEachNeuron, double learningRate = 1, string layerName = "outputNeuron")
 {
     OutputNeuron[] on = new OutputNeuron[numberOfNeurons];
     for (int c = 0; c < numberOfNeurons; c++)
     {
         on [c] = new OutputNeuron(numberOfInputOfEachNeuron, layerName + c.ToString(), learningRate);
     }
     return(on);
 }
Example #2
0
 public OutputLayer(int size, Network n) : base(size, n)
 {
     OutputNeuron[] InputNeurons = new OutputNeuron[size];
     for (int i = 0; i < size; i++)
     {
         InputNeurons[i]      = new OutputNeuron(this);
         InputNeurons[i].name = "HiddenNeuron " + i;
     }
     this.neurons = InputNeurons;
 }
Example #3
0
        ParameterList <double> getInputList(HiddenNeuron[] hiddenLayer, OutputNeuron nextNeuron)
        {
            ParameterList <double> list = new ParameterList <double> (hiddenLayer.Length);

            for (int c = 0; c < list.Length; c++)
            {
                list [c] = hiddenLayer [c].Output(c, nextNeuron);
            }
            return(list);
        }
        private void CreateOutputLayer()
        {
            var outputNeurons = new Neuron[Topology.OutputCount];
            var preLastLayer  = Layers[Topology.TotalLayersCount - 2];

            for (int i = 0; i < Topology.OutputCount; i++)
            {
                var neuron = new OutputNeuron(preLastLayer.NeuronsCountInLayer, NeuronType.Output);
                outputNeurons[i] = neuron;
            }
            var outputLayer = new Layer(outputNeurons, NeuronType.Output);

            Layers[Topology.TotalLayersCount - 1] = outputLayer;
        }
        internal IEnumerable <IOutputNeuron> BuildOutputNeurons(IEnumerable <INeuron> prevLayer, ushort count, ActivationTypes type)
        {
            var tempOutputLayer = new List <IOutputNeuron>(count);

            for (int i = 0; i < count; i++)
            {
                var neuron = new OutputNeuron(type);
                tempOutputLayer.Add(neuron);
                foreach (var inNeuron in prevLayer)
                {
                    ConnectAxon(inNeuron, neuron, count);
                }
            }

            ((List <IOutputNeuron>) this.OutputNeurons).AddRange(tempOutputLayer);
            return(tempOutputLayer);
        }
Example #6
0
        private void CreateNeurons(ushort[] layerSizes, ITransferFunction[] transferFunctions)
        {
            if (layerSizes.Length != transferFunctions.Length)
            {
                throw new ArgumentException("Cannot make a network with these parameters.");
            }

            if (transferFunctions[0] != null)
            {
                throw new ArgumentException("Input layer transfer function must be null.");
            }

            Neurons = new Neuron[layerSizes.Length][];
            for (byte l = 0; l < layerSizes.Length; l++)
            {
                // creates neurons in the input layer
                if (l == 0)
                {
                    Neurons[l] = new InputNeuron[layerSizes[l]];
                    for (ushort i = 0; i < layerSizes[l]; i++)
                    {
                        Neurons[l][i] = new InputNeuron(transferFunctions[l]);
                    }
                }

                // creates neurons in the hidden layer(s)
                else if (l < layerSizes.Length - 1)
                {
                    Neurons[l] = new HiddenNeuron[layerSizes[l]];
                    for (ushort i = 0; i < layerSizes[l]; i++)
                    {
                        Neurons[l][i] = new HiddenNeuron(transferFunctions[l]);
                    }
                }

                // creates neurons in the output layer
                else
                {
                    Neurons[l] = new OutputNeuron[layerSizes[l]];
                    for (ushort i = 0; i < layerSizes[l]; i++)
                    {
                        Neurons[l][i] = new OutputNeuron(transferFunctions[l]);
                    }
                }
            }
        }
 public String GetName()
 {
     if (OutputNeuron != null)
     {
         if (InputNeuron != null)
         {
             return(String.Format("Source: {0}, Target: {1}", InputNeuron.GetName(), OutputNeuron.GetName()));
         }
         else
         {
             return(String.Format("Input layer: {0}, Target: {1}", InputIndex, OutputNeuron.GetName())); //input
         }
     }
     else
     {
         return("");
     }
 }