Example #1
0
    private void Awake()
    {
        instance = this;
        thisNet  = new NeuralNetwork.NeuralNet(4, 3, 1);

        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 1.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.0, 1.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 0.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.0, 0.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 1.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.0, 1.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 0.0, 0.5 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.0, 0.0, 0.5 }, new double[] { 0.5 }));

        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 1.0, 0.1 }, new double[] { 0.1 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 0.0, 0.1 }, new double[] { 0.1 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.5, 0.0, 0.1 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.5, 1.0, 0.1 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 1.0, 0.1 }, new double[] { 0.1 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 0.0, 0.1 }, new double[] { 0.1 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.5, 0.0, 0.1 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.5, 1.0, 0.1 }, new double[] { 0.5 }));

        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 1.0, 0.9 }, new double[] { 0.9 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.0, 1.0, 0.9 }, new double[] { 0.9 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 1.0, 0.5, 0.9 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 1.0, 0.0, 0.5, 0.9 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 1.0, 0.9 }, new double[] { 0.9 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.0, 1.0, 0.9 }, new double[] { 0.9 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 1.0, 0.5, 0.9 }, new double[] { 0.5 }));
        DataSets.Add(new NeuralNetwork.DataSet(new double[] { 0.0, 0.0, 0.5, 0.9 }, new double[] { 0.5 }));

        thisNet.Train(DataSets, 10);
    }
Example #2
0
 public NeuralNet Crossover(NeuralNet partner)
 {
     OutputLayer.Crossover(partner.OutputLayer);
     foreach (var layer in HiddenLayers.Zip(partner.HiddenLayers))
     {
         layer.Key.Crossover(layer.Value);
     }
     return(this);
 }
Example #3
0
        static void Main(string[] args)
        {
            var TrainingData = MNIST.ReadMNIST(false);

            //Set Random Seed for better debugging
            Accord.Math.Random.Generator.Seed = 5;
            //Input, Hidden, Output
            NeuralNet NN = new NeuralNet(2, 2, 1);

            TrainXORTest(NN);
        }
    private void OnEnable()
    {
        net      = new NeuralNet(3, 1, 1);
        dataSets = new List <DataSet>();
        Debug.Log("inicializando");

        double[] inputs        = new double[3];
        double[] desireOutputs = new double[1];
        inputs[0] = 0.1f;
        inputs[1] = 0.1f;
        inputs[2] = 0.1f;

        desireOutputs[0] = 0.1f;
        dataSets.Add(new DataSet(inputs, desireOutputs));

        net.Train(dataSets, 0.001f);

        double[] vals = new double[3];
        vals[0] = 0.1f;
        vals[1] = 0.1f;
        vals[2] = 0.9f;
        double[] respuesta = net.Compute(vals);
        Debug.Log(respuesta[0]);

        if (respuesta[0] < 0.09f)
        {
            col = 0;
        }
        if (respuesta[0] > 0.09f && respuesta[0] < 0.1)
        {
            col = 1;
        }
        if (respuesta[0] > 0.1f)
        {
            col = 2;
        }

        sonidoNotificacion.SetActive(true);
        indice++;
        botones[0].SetActive(true);
        botones[1].SetActive(true);
        botones[2].SetActive(true);
        cajasMensaje[indice - 1].SetActive(true);
        textoMensaje[indice - 1].text = maquina.mensajesMaquina[indice - 1, col];
        textoRespuesta[0].text        = maquina.mensajesUsuario[indice - 1, 0];
        textoRespuesta[1].text        = maquina.mensajesUsuario[indice - 1, 1];
        textoRespuesta[2].text        = maquina.mensajesUsuario[indice - 1, 2];
        if (indice == 6)
        {
            maquina.ActivarEstado(maquina.EstadoCaptura);
        }
    }
Example #5
0
 //Crossover
 public void Crossover(NeuralNet other, Random rng)
 {
     for (int i = 0; i < Layers.Count; i++)
     {
         for (int j = 0; j < Layers[i].Neurons.Length; j++)
         {
             if (rng.Next(2) == 0)
             {
                 Layers[i].Neurons[j].BiasWeight = other.Layers[i].Neurons[j].BiasWeight;
                 other.Layers[i].Neurons[j].Weights.CopyTo(Layers[i].Neurons[j].Weights, 0);
             }
         }
     }
 }
Example #6
0
    //Initialize Network and Dataset
    void Awake()
    {
        int numInputs, numHiddenLayers, numOutputs;

        if (File.Exists("data.txt"))
        {
            net = ReadFromXmlFile <NeuralNet>("data.txt");
            Debug.Log("THIS WORKS");
        }
        else
        {
            net = new NeuralNet(37, 2, 10);
            Debug.Log("reached here");
        }
        dataSets = new List <DataSet>();
    }
Example #7
0
        static void Main(string[] args)
        {
            NeuralNet net = new NeuralNet(new int[] { 2, 3, 1 });

            double[][][] trainData = net.GetTrainData("trainSet.txt");

            net.OpenNet("1.xml");
            //net.Training(trainData);
            //net.SaveNet("1.xml");

            Console.WriteLine("in: 0 0\nout: {0}\n\nin: 1 1\nout: {1}\n\nin: 0 1\nout: {2}\n\nin: 1 0\nout: {3}\n\n",
                              net.Ask(new double[] { 0, 0 })[0],
                              net.Ask(new double[] { 1, 1 })[0],
                              net.Ask(new double[] { 0, 1 })[0],
                              net.Ask(new double[] { 1, 0 })[0]);
            Console.ReadKey();
        }
Example #8
0
        static void Main(string[] args)
        {
            //First argument will be the path to the images
            //Second argument will be the path to the labels

            int width  = 28;
            int height = 28;

            List <Digit> digits = GetLabeledImages(args[0], args[1], width, height).Shuffle().Cast <Digit>().ToList();

            NeuralNet net = NeuralNet.Input(width * height).Layer <ReLU>(20).Layer <LeakyReLU1>(20).Output <Sigmoid>(10);

            IEnumerable <IDataSet> training = digits.Take(digits.Count() - 100);
            IEnumerable <IDataSet> test     = digits.Skip(digits.Count() - 100);

            net.TrainByExample(training, epochs: 2, fuzz: 0.2d);

            Console.WriteLine($"\n{test.Where(sample => net.Evaluate(sample.Values).Select((o, i) => (o, i)).MaxBy(o => o.o).i == sample.Targets.MaxIndex()).Count()}/{test.Count()} correct from test set.");

            File.WriteAllText(@"C:\NNTrimmed.json", net.ToJson());
        }
Example #9
0
        private static void TrainXORTest(NeuralNet NN)
        {
            double[][] TrainData =
            {
                new double[] { 0, 1 },
                new double[] { 1, 1 },
                new double[] { 1, 0 },
                new double[] { 0, 0 },
            };

            var Labels = new double[][]
            {
                new double[] { 0 },
                new double[] { 1 },
                new double[] { 0 },
                new double[] { 0 },
            };

            for (int i = 1; i < 10000; i++)
            {
                TrainData.Shuffle();
                NN.Train(TrainData, Labels, 0.01);
            }
        }
        /// <summary>
        /// Creates the visual representation of what an input is doing to the neural network
        /// </summary>
        /// <param name="input"></param>
        /// <returns></returns>
        public List <double> NodeUpdate(List <double> input, NeuralNet nNetwork)
        {
            List <double> outputs = new List <double>();

            int weight = 0;

            if (input.Count != numInputs)
            {
                return(outputs);
            }

            //Set Input Nodes
            for (int i = 0; i < input.Count; i++)
            {
                if (input[i] > 0)
                {
                    inputObj[i].color = Color.green * (float)(input[i]);
                    inputObj[i].transform.localScale = Vector3.one * ((float)input[i]);
                }
                else
                {
                    inputObj[i].color = Color.red * (float)(input[i] * -1);
                    inputObj[i].transform.localScale = Vector3.one * ((float)input[i] * -1);
                }
            }

            for (int i = 0; i < numHiddenLayers + 1; i++)
            {
                if (i > 0)
                {
                    input = outputs;
                }

                outputs = new List <double>();
                weight  = 0;

                for (int j = 0; j < nNetwork.layers[i].numNeurons; j++)
                {
                    double netInput = 0;

                    int nNumInputs = nNetwork.layers[i].neurons[j].numInputs;

                    //For each Weight

                    for (int k = 0; k < nNumInputs; k++)
                    {
                        //Sum the weights and inputs

                        netInput += nNetwork.layers[i].neurons[j].weights[k] * input[weight];

                        //Set Lines
                        float line = (float)(nNetwork.layers[i].neurons[j].weights[k] * input[weight++]);

                        if (line > 0)
                        {
                            weightObj[i][j][k].SetColors(Color.green * line, Color.green * line);
                            weightObj[i][j][k].SetWidth(line * .25f, line * .25f);
                        }
                        else
                        {
                            weightObj[i][j][k].SetColors(Color.red * -line, Color.red * -line);
                            weightObj[i][j][k].SetWidth(-line * .25f, -line * .25f);
                        }
                    }

                    //Add bias

                    netInput += nNetwork.layers[i].neurons[j].weights[nNumInputs] * -1;

                    double sig = NeuralNet.Sigmoid(netInput, 10);
                    //Set Node Color
                    layersObj[i][j].color = (Color.green * (float)sig);
                    layersObj[i][j].transform.localScale = (Vector3.one * (float)sig);

                    outputs.Add(sig);

                    weight = 0;
                }
            }
            return(outputs);
        }
Example #11
0
        public TrainAndTestPage(NeuralNetRunType runtype, NeuralNet neuralnet, MNISTDataManager mnistdata)
        {
            // Define GUI

            // Page properties
            Title           = string.Format("{0} Net", runtype.ToString().ToUpperFirstOnly());
            BackgroundColor = Color.SteelBlue;
            Padding         = new Thickness(Application.Current.MainPage.Width * 0.05, Application.Current.MainPage.Height * 0.05);

            // Label for description
            Label description = new Label
            {
                Text   = string.Format("Please define the number of data sets from the MNIST {0} data base to be used for {0}ing. Each data set represents one digit. The {0} data base holds about {1:N0} data sets in total.", runtype.ToString(), mnistdata.CountData),
                Margin = new Thickness(0, 0, 0, Application.Current.MainPage.Height * 0.075)
            };

            // Label for number of training / testing sets used
            Label label_useddatasets = new Label
            {
                Text   = String.Format("{0:N0} data set{1} selected", mnistdata.UsedDataSets, mnistdata.UsedDataSets == 0 ? "" : "s"),
                Margin = new Thickness(0, 0, 0, Application.Current.MainPage.Height * 0.075)
            };

            // Slider for number of data sets used for training / testing
            Slider slider_useddatasets = new Slider(1, mnistdata.CountData, mnistdata.UsedDataSets);

            slider_useddatasets.ValueChanged += (s, e) =>
            {
                mnistdata.UsedDataSets  = (int)e.NewValue;
                label_useddatasets.Text = String.Format("{0:N0} data set{1} selected", mnistdata.UsedDataSets, mnistdata.UsedDataSets == 0 ? "" : "s");
            };

            // Progress bar
            ProgressBar progressbar = new ProgressBar {
                Progress = 0
            };

            // Label for showing progress
            Label label_progress = new Label
            {
                Text = "Currently no calculation running",
            };

            // Button to start training / testing
            Button button = new Button
            {
                Text          = string.Format("Start {0}ing", runtype.ToString().ToUpperFirstOnly()),
                WidthRequest  = Application.Current.MainPage.Width * 0.5,
                HeightRequest = Application.Current.MainPage.Height * 0.10
            };

            // Define page
            Content = new ScrollView
            {
                Content = new StackLayout
                {
                    Children =
                    {
                        description,
                        label_useddatasets,
                        slider_useddatasets,
                        button,
                        progressbar,
                        label_progress
                    }
                }
            };

            // Button event
            // Here training and test sessions are executed
            button.Clicked += async(s, e) =>
            {
                // Check if another calculation is currently running
                if (activerun == true)
                {
                    var answer = await DisplayAlert("Warning", "Do you want to stop current calculation?", "Yes", "No");

                    if (answer)
                    {
                        endrun = true;
                    }
                    return;
                }

                // Check if selected data set is big
                if (mnistdata.UsedDataSets > mnistdata.UsedDataSetsWarning)
                {
                    bool answer = await DisplayAlert("Warning", "Please be aware that big data sets effect run time. Continue?", "Yes", "No");

                    if (!answer)
                    {
                        return;
                    }
                }

                // Set activerun and endrun flags
                activerun = true;
                endrun    = false;

                // Disable Back button
                NavigationPage.SetHasBackButton(this, false);

                // Rename Button to Stop
                button.Text = string.Format("Stop {0}ing", runtype.ToString().ToUpperFirstOnly());

                // Define parameters for progress bar calculation (increase bar 100 times or each 20 runs)
                int progresssteps = Math.Max(100, mnistdata.UsedDataSets / 20);
                int progressspan  = (int)Math.Ceiling((double)mnistdata.UsedDataSets / progresssteps);

                // Counter for training / testing runs
                int i = 0;

                // Initialize progress bar
                label_progress.Text = i.ToString() + " / " + mnistdata.UsedDataSets.ToString();
                await progressbar.ProgressTo((double)i / mnistdata.UsedDataSets, 1, Easing.Linear);

                // Train neural net
                if (runtype == NeuralNetRunType.train)
                {
                    while (i < mnistdata.UsedDataSets && endrun == false)
                    {
                        // Counter for runs in progress step
                        int j = 0;

                        // Training loop for one progress step done as task
                        await Task.Run(() =>
                        {
                            while (j < progressspan && i < mnistdata.UsedDataSets)
                            {
                                // Train net with data set i
                                neuralnet.Train(mnistdata.Input(i), mnistdata.Output(i));

                                j++;
                                i++;
                            }

                            // Remember number of training data sets
                            neuralnet.TrainingDataCounter += j;
                        });

                        // Update progress bar
                        label_progress.Text = i.ToString() + " / " + mnistdata.UsedDataSets.ToString();
                        await progressbar.ProgressTo((double)i / mnistdata.UsedDataSets, 1, Easing.Linear);
                    }

                    // Show mesage
                    await DisplayAlert("Result", string.Format("Neural net trained with {0:N0} data sets", i), "OK");
                }

                if (runtype == NeuralNetRunType.test)
                {
                    // Setup scorecard for capturing test results
                    // digittotal counts all trained figures, digitcorrect the ones that are identified correctly
                    Vector <double> digittotal = Vector <double> .Build.Dense(10);

                    Vector <double> digitcorrect = Vector <double> .Build.Dense(10);

                    // Testing loop
                    while (i < mnistdata.UsedDataSets && endrun == false)
                    {
                        // Counter for runs in progress step
                        int j = 0;

                        // Testing loop for one progress step done as task
                        await Task.Run(() =>
                        {
                            while (j < progressspan && i < mnistdata.UsedDataSets)
                            {
                                // Increase counter for testet digit (0..9)
                                int number = mnistdata.Number(i);
                                digittotal[number]++;

                                // Ask net
                                Vector <double> answer = neuralnet.Query(mnistdata.Input(i));

                                // Check if it's correct
                                if (answer.AbsoluteMaximumIndex() == number)
                                {
                                    digitcorrect[number]++;
                                }

                                j++;
                                i++;
                            }

                            // Remember number of training data sets
                            neuralnet.TrainingDataCounter += j;
                        });

                        // Update progress bar
                        label_progress.Text = i.ToString() + " / " + mnistdata.UsedDataSets.ToString();
                        await progressbar.ProgressTo((double)i / mnistdata.UsedDataSets, 1, Easing.Linear);
                    }

                    // Remeber performance result
                    neuralnet.Performance.Add(digitcorrect.Sum() / digittotal.Sum());

                    // Show test results
                    await Navigation.PushAsync(new ResultsMNISTPage(neuralnet, mnistdata, digittotal, digitcorrect));
                }

                // Reset progress bar
                label_progress.Text = "Currently no calculation running";
                await progressbar.ProgressTo(0.0, 250, Easing.Linear);

                // Rename Button to Start
                button.Text = string.Format("Start {0}ing", runtype.ToString().ToUpperFirstOnly());

                // Enable Back button
                NavigationPage.SetHasBackButton(this, true);

                // Cancel activerun flag
                activerun = false;
            };
        }
        public void NeuralNetConstructorAssignsCorrectNumberOfWeightsToEachLayer()
        {
            Layer input = new Layer(LayerType.Input, null, 0, 3);
            Layer hidden = new Layer(LayerType.Hidden, new LogisticSigmoidActivationFunction(), 1, 4);
            Layer output = new Layer(LayerType.Output, new SoftmaxActivationFunction(), 2, 2);

            input.Nodes[0].Input = 1;
            input.Nodes[1].Input = 2;
            input.Nodes[2].Input = 3;

            input.Nodes[0].ActivatedSum = 1;
            input.Nodes[1].ActivatedSum = 2;
            input.Nodes[2].ActivatedSum = 3;

            List<Layer> layers = new List<Layer>();
            layers.Add(input);
            layers.Add(hidden);
            layers.Add(output);

            //24 weights
            List<double> weights = new List<double>()
            {
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1
            };

            //6 biases
            List<double> biases = new List<double>()
            {
                1,
                1,
                1,
                1,
                1,
                1
            };

            NeuralNet nn = new NeuralNet(layers, weights, biases);

            Assert.AreEqual(nn.Layers[0].Nodes.Count * nn.Layers[1].Nodes.Count, nn.Layers[0].Weights.Count);
            Assert.AreEqual(nn.Layers[1].Nodes.Count * nn.Layers[2].Nodes.Count, nn.Layers[1].Weights.Count);
        }
        public void NeuralNetConstructorOrdersLayersAscendingByLayerOrder()
        {
            Layer input = new Layer(LayerType.Input, null, 0, 3);
            Layer output = new Layer(LayerType.Output, new SoftmaxActivationFunction(), 2, 2);
            Layer hidden = new Layer(LayerType.Hidden, new LogisticSigmoidActivationFunction(), 1, 4);

            input.Nodes[0].Input = 1;
            input.Nodes[1].Input = 2;
            input.Nodes[2].Input = 3;

            input.Nodes[0].ActivatedSum = 1;
            input.Nodes[1].ActivatedSum = 2;
            input.Nodes[2].ActivatedSum = 3;

            List<Layer> layers = new List<Layer>();
            layers.Add(input);
            layers.Add(output);
            layers.Add(hidden);

            //24 weights
            List<double> weights = new List<double>()
            {
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1
            };

            //6 biases
            List<double> biases = new List<double>()
            {
                1,
                1,
                1,
                1,
                1,
                1
            };

            NeuralNet nn = new NeuralNet(layers, weights, biases);

            //nn.Run();

            Assert.AreEqual(0, nn.Layers[0].LayerOrder);
            Assert.AreEqual(1, nn.Layers[1].LayerOrder);
            Assert.AreEqual(2, nn.Layers[2].LayerOrder);
        }
Example #14
0
        public ResultsMNISTPage(NeuralNet neuralnet, MNISTDataManager mnistdata, Vector <double> digittotal, Vector <double> digitcorrect)
        {
            // Define GUI

            // Page properties
            Title           = "Results";
            BackgroundColor = Color.SteelBlue;
            Padding         = new Thickness(Application.Current.MainPage.Width * 0.05, Application.Current.MainPage.Height * 0.05);

            // Define styles for labels in grid
            var labelgridStyle = new Style(typeof(Label))
            {
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.SteelBlue
                    },
                    new Setter {
                        Property = Label.HorizontalOptionsProperty, Value = LayoutOptions.FillAndExpand
                    },
                    new Setter {
                        Property = Label.HorizontalTextAlignmentProperty, Value = TextAlignment.Center
                    },
                    new Setter {
                        Property = Label.VerticalOptionsProperty, Value = LayoutOptions.FillAndExpand
                    },
                    new Setter {
                        Property = Label.VerticalTextAlignmentProperty, Value = TextAlignment.Center
                    }
                }
            };

            var labelgridhighlightStyle = new Style(typeof(Label))
            {
                BasedOn = labelgridStyle,
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.DarkOrange
                    },
                    new Setter {
                        Property = Label.FontAttributesProperty, Value = FontAttributes.Bold
                    }
                }
            };

            var labelgridheadlineStyle = new Style(typeof(Label))
            {
                BasedOn = labelgridStyle,
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.SteelBlue
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.FontAttributesProperty, Value = FontAttributes.Bold
                    }
                }
            };

            // Define 11x3 grid for representing results
            Grid grid = new Grid();

            grid.BackgroundColor   = Color.GhostWhite;
            grid.ColumnSpacing     = 1;
            grid.RowSpacing        = 1;
            grid.Padding           = new Thickness(1);
            grid.HorizontalOptions = LayoutOptions.FillAndExpand;
            grid.VerticalOptions   = LayoutOptions.FillAndExpand;

            for (int i = 0; i < 4; i++)
            {
                grid.ColumnDefinitions.Add(new ColumnDefinition {
                    Width = new GridLength(1, GridUnitType.Star)
                });
            }
            for (int i = 0; i < 12; i++)
            {
                grid.RowDefinitions.Add(new RowDefinition {
                    Height = new GridLength(1, GridUnitType.Star)
                });
            }

            // Add headlines to grid
            grid.Children.Add(new Label {
                Text = "Digit", Style = labelgridheadlineStyle
            }, 0, 0);
            grid.Children.Add(new Label {
                Text = "Total", Style = labelgridheadlineStyle
            }, 1, 0);
            grid.Children.Add(new Label {
                Text = "Correct", Style = labelgridheadlineStyle
            }, 2, 0);
            grid.Children.Add(new Label {
                Text = "in %", Style = labelgridheadlineStyle
            }, 3, 0);

            // Add results for each digit to grid
            for (int i = 0; i < 10; i++)
            {
                grid.Children.Add(new Label {
                    Text = i.ToString(), Style = labelgridStyle
                }, 0, i + 1);
                grid.Children.Add(new Label {
                    Text = String.Format("{0:N0}", digittotal[i]), Style = labelgridStyle
                }, 1, i + 1);
                grid.Children.Add(new Label {
                    Text = String.Format("{0:N0}", digitcorrect[i]), Style = labelgridStyle
                }, 2, i + 1);
                grid.Children.Add(new Label {
                    Text = String.Format("{0:P0}", digittotal[i] > 0 ? digitcorrect[i] / digittotal[i] : 0), Style = labelgridStyle
                }, 3, i + 1);
            }

            // Add sum to grid
            grid.Children.Add(new Label {
                Text = "Sum", Style = labelgridhighlightStyle
            }, 0, 11);
            grid.Children.Add(new Label {
                Text = String.Format("{0:N0}", digittotal.Sum()), Style = labelgridhighlightStyle
            }, 1, 11);
            grid.Children.Add(new Label {
                Text = String.Format("{0:N0}", digitcorrect.Sum()), Style = labelgridhighlightStyle
            }, 2, 11);
            grid.Children.Add(new Label {
                Text = String.Format("{0:P0}", digitcorrect.Sum() / digittotal.Sum()), Style = labelgridhighlightStyle
            }, 3, 11);

            // Define button for details
            Button button = new Button
            {
                Text            = "Details",
                WidthRequest    = Application.Current.MainPage.Width * 0.8,
                HeightRequest   = Application.Current.MainPage.Height * 0.10,
                VerticalOptions = LayoutOptions.Center,
            };

            // Show page with detailed results for each digit
            button.Clicked += (s, e) =>
            {
                if (messageflag == false)
                {
                    DisplayAlert("Information", "Look at the details by swiping left and right.", "OK");
                    messageflag = true;
                }

                Navigation.PushAsync(new ResultsDetailsPage(neuralnet, mnistdata));
            };

            // Define page
            Content = new ScrollView
            {
                Content = new StackLayout
                {
                    Children = { grid, button },
                    Spacing  = Application.Current.MainPage.Height * 0.05
                }
            };
        }
        /// <summary>
        /// Copies the contents of the source neural network into this neural network.
        /// </summary>
        /// <param name="src">the source net, to be copied</param>
        ///
        public void CopyNeuralNet(NeuralNet src)
        {
            mLayers.Clear();
            mActivations.Clear();
            mUnitInputs.Clear();
            mActiveUnits.Clear();
            mActiveSlope.Clear();
            mActiveAmplify.Clear();

            mNumInputs      = src.mNumInputs;
            mNumOutputs     = src.mNumOutputs;
            mNumLayers      = src.mNumLayers;
            mOutUnitType    = src.mOutUnitType;
            mOutUnitSlope   = src.mOutUnitSlope;
            mOutUnitAmplify = src.mOutUnitAmplify;

            // the weighted connections linking the network layers
            for (int i = 0; i < src.mLayers.Count; i++)
            {
                NNetWeightedConnect wCnct = new NNetWeightedConnect(src.mLayers[i]);
                mLayers.Add(wCnct);
            }

            // the activation values for each of the network layers
            int rowLen = src.mActivations.Count;

            for (int row = 0; row < rowLen; row++)
            {
                List <double> vec    = new List <double>();
                int           colLen = src.mActivations[row].Count;

                for (int col = 0; col < colLen; col++)
                {
                    vec.Add(src.mActivations[row][col]);
                }

                mActivations.Add(vec);
            }

            // the input values for the layer activation functions
            rowLen = src.mUnitInputs.Count;

            for (int row = 0; row < rowLen; row++)
            {
                List <double> vec    = new List <double>();
                int           colLen = src.mUnitInputs[row].Count;

                for (int col = 0; col < colLen; col++)
                {
                    vec.Add(src.mUnitInputs[row][col]);
                }

                mUnitInputs.Add(vec);
            }

            // the hidden layer unit activation function types
            for (int i = 0; i < src.mActiveUnits.Count; i++)
            {
                mActiveUnits.Add(src.mActiveUnits[i]);
            }

            // the hidden layer unit activation function slope values
            for (int i = 0; i < src.mActiveSlope.Count; i++)
            {
                mActiveSlope.Add(src.mActiveSlope[i]);
            }

            // the hidden layer unit activation function amplify values
            for (int i = 0; i < src.mActiveAmplify.Count; i++)
            {
                mActiveAmplify.Add(src.mActiveAmplify[i]);
            }
        }
Example #16
0
 public Neuron()
 {
     InputSynapses  = new List <Synapse>();            //create an object from the input list
     OutputSynapses = new List <Synapse>();            //create an object from the output list
     Bias           = NeuralNet.GetRandom();           //This value is randomized for every neuorn
 }
Example #17
0
        public static Tensor4[] GetRandBatch(Tensor3[] x, int[] y, int batchSize, NeuralNet net)
        {
            Tensor4 batchX = new Tensor4(x[0].width, x[0].height, x[0].deep, batchSize);
            Tensor4 batchY = new Tensor4(net.output.width, net.output.height, net.output.deep, batchSize);

            int[] indexes = new int[batchSize];

            int index = 0;

            while (true)
            {
                indexes[index] = (int)(rand.NextDouble() * x.Length);
                for (int i = 0; i < index; i++)
                {
                    if (indexes[i] == indexes[index])
                    {
                        break;
                    }
                    if (i == index - 1)
                    {
                        index++;
                        break;
                    }
                }
                if (index == 0)
                {
                    index++;
                }
                if (index == indexes.Length)
                {
                    break;
                }
            }


            for (int i = 0; i < batchSize; i++)
            {
                for (int zInd = 0; zInd < x[indexes[i]].deep; zInd++)
                {
                    for (int yInd = 0; yInd < x[indexes[i]].height; yInd++)
                    {
                        for (int xInd = 0; xInd < x[indexes[i]].width; xInd++)
                        {
                            batchX[i, zInd, yInd, xInd] = x[indexes[i]][zInd, yInd, xInd];
                        }
                    }
                }

                Tensor3 Y = new Tensor3(net.output.width, net.output.height, net.output.deep);
                if (net.output.width != 1)
                {
                    Y[0, 0, y[indexes[i]]] = 1.0;
                }
                else
                {
                    Y[y[indexes[i]], 0, 0] = 1.0;
                }

                for (int zInd = 0; zInd < Y.deep; zInd++)
                {
                    for (int yInd = 0; yInd < Y.height; yInd++)
                    {
                        for (int xInd = 0; xInd < Y.width; xInd++)
                        {
                            batchY[i, zInd, yInd, xInd] = Y[zInd, yInd, xInd];
                        }
                    }
                }
            }

            return(new Tensor4[] { batchX, batchY });
        }
Example #18
0
        public ResultsCamPage(NeuralNet neuralnet, Vector <double> input, Vector <double> result)
        {
            // Define GUI

            // Page properties
            Title           = "Results";
            BackgroundColor = Color.SteelBlue;
            Padding         = new Thickness(Application.Current.MainPage.Width * 0.05, Application.Current.MainPage.Height * 0.05);


            // Define styles for labels in grid
            var labelgridStyle = new Style(typeof(Label))
            {
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.SteelBlue
                    },
                    new Setter {
                        Property = Label.HorizontalOptionsProperty, Value = LayoutOptions.FillAndExpand
                    },
                    new Setter {
                        Property = Label.HorizontalTextAlignmentProperty, Value = TextAlignment.Center
                    },
                    new Setter {
                        Property = Label.VerticalOptionsProperty, Value = LayoutOptions.FillAndExpand
                    },
                    new Setter {
                        Property = Label.VerticalTextAlignmentProperty, Value = TextAlignment.Center
                    }
                }
            };

            var labelgridhighlightStyle = new Style(typeof(Label))
            {
                BasedOn = labelgridStyle,
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.DarkOrange
                    },
                    new Setter {
                        Property = Label.FontAttributesProperty, Value = FontAttributes.Bold
                    }
                }
            };

            var labelgridheadlineStyle = new Style(typeof(Label))
            {
                BasedOn = labelgridStyle,
                Setters =
                {
                    new Setter {
                        Property = Label.TextColorProperty, Value = Color.SteelBlue
                    },
                    new Setter {
                        Property = Label.BackgroundColorProperty, Value = Color.GhostWhite
                    },
                    new Setter {
                        Property = Label.FontAttributesProperty, Value = FontAttributes.Bold
                    }
                }
            };

            // Define 11x3 grid for representing results
            Grid grid = new Grid();

            grid.BackgroundColor   = Color.GhostWhite;
            grid.ColumnSpacing     = 1;
            grid.RowSpacing        = 1;
            grid.Padding           = new Thickness(1);
            grid.HorizontalOptions = LayoutOptions.FillAndExpand;
            grid.VerticalOptions   = LayoutOptions.FillAndExpand;

            for (int i = 0; i < 3; i++)
            {
                grid.ColumnDefinitions.Add(new ColumnDefinition {
                    Width = new GridLength(1, GridUnitType.Star)
                });
            }
            for (int i = 0; i < 11; i++)
            {
                grid.RowDefinitions.Add(new RowDefinition {
                    Height = new GridLength(1, GridUnitType.Star)
                });
            }

            // Add headlines to grid
            grid.Children.Add(new Label {
                Text = "Digit", Style = labelgridheadlineStyle
            }, 0, 0);
            grid.Children.Add(new Label {
                Text = "Ouput", Style = labelgridheadlineStyle
            }, 1, 0);
            grid.Children.Add(new Label {
                Text = "Share", Style = labelgridheadlineStyle
            }, 2, 0);

            // Add content to grid
            for (int i = 0; i < 10; i++)
            {
                if (result.AbsoluteMaximumIndex() == i)
                {
                    grid.Children.Add(new Label {
                        Text = i.ToString(), Style = labelgridhighlightStyle
                    }, 0, i + 1);
                    grid.Children.Add(new Label {
                        Text = String.Format("{0:N3}", result[i]), Style = labelgridhighlightStyle
                    }, 1, i + 1);
                    grid.Children.Add(new Label {
                        Text = String.Format("{0:P1}", result[i] / result.Sum()), Style = labelgridhighlightStyle
                    }, 2, i + 1);
                }
                else
                {
                    grid.Children.Add(new Label {
                        Text = i.ToString(), Style = labelgridStyle
                    }, 0, i + 1);
                    grid.Children.Add(new Label {
                        Text = String.Format("{0:N3}", result[i]), Style = labelgridStyle
                    }, 1, i + 1);
                    grid.Children.Add(new Label {
                        Text = String.Format("{0:P1}", result[i] / result.Sum()), Style = labelgridStyle
                    }, 2, i + 1);
                }
            }

            // Define 2x3 grid for training net with own handwriting
            Grid grid2 = new Grid();

            grid2.BackgroundColor   = Color.Transparent;
            grid2.ColumnSpacing     = 0;
            grid2.RowSpacing        = 0;
            grid2.HorizontalOptions = LayoutOptions.Center;

            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(8, GridUnitType.Star)
            });
            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(2, GridUnitType.Star)
            });
            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(1, GridUnitType.Star)
            });
            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(2, GridUnitType.Star)
            });
            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(1, GridUnitType.Star)
            });
            grid2.ColumnDefinitions.Add(new ColumnDefinition {
                Width = new GridLength(2, GridUnitType.Star)
            });

            grid2.RowDefinitions.Add(new RowDefinition {
                Height = new GridLength(1, GridUnitType.Star)
            });
            grid2.RowDefinitions.Add(new RowDefinition {
                Height = new GridLength(1, GridUnitType.Star)
            });

            // Place content
            grid2.Children.Add(new Label {
                Text = "Net's answer:", Style = labelgridStyle, HorizontalTextAlignment = TextAlignment.Start
            }, 0, 0);
            grid2.Children.Add(new Label {
                Text = "Correct answer:", Style = labelgridStyle, HorizontalTextAlignment = TextAlignment.Start
            }, 0, 1);
            grid2.Children.Add(new Label {
                Text = result.AbsoluteMaximumIndex().ToString(), Style = labelgridStyle
            }, 1, 0);

            // labelresult keeps correct answer in Text property
            Label labelresult = new Label {
                Text = result.AbsoluteMaximumIndex().ToString(), Style = labelgridStyle
            };

            grid2.Children.Add(labelresult, 1, 1);

            // Buttons for changing value of correct answer
            Button buttondown = new Button()
            {
                Text = "-"
            };

            grid2.Children.Add(buttondown, 3, 4, 0, 2);
            buttondown.Clicked += (s, e) =>
            {
                if (Convert.ToInt32(labelresult.Text) > 0)
                {
                    labelresult.Text = (Convert.ToInt32(labelresult.Text) - 1).ToString();
                }
                else
                {
                    labelresult.Text = "9";
                }
            };

            Button buttonup = new Button()
            {
                Text = "+"
            };

            grid2.Children.Add(buttonup, 5, 6, 0, 2);
            buttonup.Clicked += (s, e) =>
            {
                if (Convert.ToInt32(labelresult.Text) < 9)
                {
                    labelresult.Text = (Convert.ToInt32(labelresult.Text) + 1).ToString();
                }
                else
                {
                    labelresult.Text = "0";
                }
            };

            // Define button to train net
            Button button = new Button
            {
                Text            = "Train this Digit",
                WidthRequest    = Application.Current.MainPage.Width * 0.8,
                HeightRequest   = Application.Current.MainPage.Height * 0.10,
                VerticalOptions = LayoutOptions.Center,
            };

            // Train net
            button.Clicked += (s, e) =>
            {
                // Determine output vector from correct answer
                Vector <double> output = Vector <double> .Build.Dense(10, 0.01);

                output[Convert.ToInt32(labelresult.Text)] = 0.99;

                // Train net with this data set
                neuralnet.Train(input, output);

                // Increase number of training data sets used so far
                neuralnet.TrainingDataCounter++;

                DisplayAlert("Training completed", string.Format("Net trained with {0} digit{1} so far.", neuralnet.TrainingDataCounter, (neuralnet.TrainingDataCounter == 1 ? "" : "s")), "OK");
            };

            // Define page
            Content = new ScrollView
            {
                Content = new StackLayout
                {
                    Children = { grid, grid2, button },
                    Spacing  = Application.Current.MainPage.Height * 0.05
                }
            };
        }
Example #19
0
        public CameraTestPage(NeuralNet neuralnet)
        {
            // Save neural net
            this.neuralnet = neuralnet;

            // Define GUI

            // Page properties
            Title           = "Handwriting";
            BackgroundColor = Color.SteelBlue;
            Padding         = new Thickness(Application.Current.MainPage.Width * 0.05, Application.Current.MainPage.Height * 0.05);

            // Define label
            Label description = new Label
            {
                Text = "Take a picture of a single digit (0..9) with your phone camera or draw it directly with your finger on the screen"
            };

            // Define button to take pictures of digits
            Button buttoncam = new Button
            {
                Text            = "Take a Picture",
                WidthRequest    = Application.Current.MainPage.Width * 0.8,
                HeightRequest   = Application.Current.MainPage.Height * 0.10,
                VerticalOptions = LayoutOptions.Center
            };

            buttoncam.Clicked += TakeAndShowPicture;

            // Define button to draw a digit
            Button buttondraw = new Button
            {
                Text            = "Draw with Finger",
                WidthRequest    = Application.Current.MainPage.Width * 0.8,
                HeightRequest   = Application.Current.MainPage.Height * 0.10,
                VerticalOptions = LayoutOptions.Center
            };

            buttondraw.Clicked += async(s, e) =>
            {
                // Open page to draw digit
                // Note: DrawDigitPage writes result to "bitmap"
                await Navigation.PushAsync(new DrawDigitPage());
            };

            // Define button to ask net to guess the digit
            Button buttonasknet = new Button
            {
                Text            = "Ask Neural Net",
                WidthRequest    = Application.Current.MainPage.Width * 0.8,
                HeightRequest   = Application.Current.MainPage.Height * 0.10,
                VerticalOptions = LayoutOptions.Center,
            };

            buttonasknet.Clicked += AskNeuralNet;

            // Define canvas for showing the picture of the digit
            canvasview = new SKCanvasView
            {
                HorizontalOptions = LayoutOptions.FillAndExpand,
                VerticalOptions   = LayoutOptions.FillAndExpand
            };
            canvasview.PaintSurface += OnCanvasViewPaintSurface;

            Content = new ScrollView
            {
                Content = new StackLayout
                {
                    Children = { description, buttoncam, buttondraw, canvasview, buttonasknet },
                    Spacing  = Application.Current.MainPage.Height * 0.05
                }
            };

            // Convert bitmap and update canvas when page appears after drawing page
            Appearing += (s, e) =>
            {
                if (bitmap == null)
                {
                    return;
                }

                // Check if bitmap is not squared and not 28x28 px
                if ((bitmap.Width != bitmap.Height) || bitmap.Width != 28)
                {
                    // Convert bitmap to 28x28 pixel grayscale
                    bitmap = ConvertBitmap(bitmap);

                    // Update canvas
                    canvasview.InvalidateSurface();
                }
            };
        }
Example #20
0
 public Synapse(Neuron inputNeuron, Neuron outputNeuron)
 {
     InputNeuron  = inputNeuron;
     OutputNeuron = outputNeuron;
     Weight       = NeuralNet.GetRandom();
 }
Example #21
0
 public Neuron()
 {
     InputSynapses  = new List <Synapse>();
     OutputSynapses = new List <Synapse>();
     Bias           = NeuralNet.GetRandom();
 }
Example #22
0
        public ResultsDetailsPage(NeuralNet neuralnet, MNISTDataManager mnistdata)
        {
            // Save parameters
            this.neuralnet = neuralnet;
            this.mnistdata = mnistdata;

            // Define GUI

            // Page properties
            Title           = "Details";
            BackgroundColor = Color.SteelBlue;
            Padding         = new Thickness(Application.Current.MainPage.Width * 0.05, Application.Current.MainPage.Height * 0.05);

            // Step 1: Generate initial collection of pictures from MNIST database (buffersize elements)
            pictures = new ObservableCollection <CarouselItem>();
            AddPictures(0);

            // Step 2: Generate data template (just a Image with data binding to CarouselItem class)
            DataTemplate template = new DataTemplate(() =>
            {
                Image image = new Image();
                image.SetBinding(Image.SourceProperty, "Picture");
                return(image);
            });

            // Step 3: Generate carousel view
            var myCarousel = new CarouselViewControl();

            myCarousel.Position          = 0; //default
            myCarousel.ItemsSource       = pictures;
            myCarousel.ItemTemplate      = template;
            myCarousel.InterPageSpacing  = 2;
            myCarousel.Orientation       = CarouselViewOrientation.Horizontal;
            myCarousel.ShowIndicators    = false;
            myCarousel.HorizontalOptions = LayoutOptions.FillAndExpand;
            myCarousel.VerticalOptions   = LayoutOptions.FillAndExpand;

            // Define labels
            labelheadline       = new Label();
            labeldigitcorrect   = new Label();
            labeldigitanswernet = new Label
            {
                HorizontalOptions     = LayoutOptions.FillAndExpand,
                HeightRequest         = Application.Current.MainPage.Height * 0.1,
                VerticalTextAlignment = TextAlignment.Center
            };
            SetLabels(0);

            // Step 4: Build page
            Content = new ScrollView
            {
                Content = new StackLayout
                {
                    Children = { labelheadline, labeldigitcorrect, myCarousel, labeldigitanswernet },
                    Spacing  = Application.Current.MainPage.Height * 0.05
                }
            };

            // Update page when image is swiped
            myCarousel.PositionSelected += (s, e) =>
            {
                // Add new pictures if user has reached end of carousel
                // KNOWN ERROR: When end is reached the wrong picture is displayed (first picture of uploaded data)
                // Warning: stepping through all MINST data may yield to memory problems
                if (myCarousel.Position == pictures.Count - 1)
                {
                    AddPictures(myCarousel.Position + 1);
                }

                // Update label
                SetLabels(myCarousel.Position);
            };
        }
 /// <summary>
 /// Copy constructor.
 /// </summary>
 /// <param name="original">the NeuralNet object to be copied</param>
 ///
 public NeuralNet(NeuralNet original)
 {
     CopyNeuralNet(original);
 }