Example #1
0
        public NNManager()
        {
            const int nbOfInputs  = 2;
            const int nbOfOutputs = 1;
            const int sizeDataSet = 10000;
            var       sizeLayers  = new int[0];
            //sizeLayers[0] = 2;
            var Rand = new Random(Guid.NewGuid().GetHashCode());

            var nn = new NNNeuralNetwork(nbOfInputs, nbOfOutputs, sizeLayers);

            nn.Initialise();

            double[][] dataset  = new double[sizeDataSet][];
            double[][] expected = new double[sizeDataSet][];

            for (int i = 0; i < sizeDataSet; i++)
            {
                dataset[i]    = new double[nbOfInputs];
                dataset[i][0] = Rand.Next(2);
                dataset[i][1] = Rand.Next(2);

                expected[i]    = new double[1];
                expected[i][0] = dataset[i][0] + dataset[i][1];
                if (expected[i][0] == 2)
                {
                    expected[i][0] = 1;
                }
            }

            var Trainer = new NNTrainer();

            Trainer.Train(nn, dataset, expected, 0.5, 15);
        }
Example #2
0
        private void UpdateWeights(NNNeuralNetwork nn, double[] nnInputs, double learningRate)
        {
            for (int i = 0; i < nn.nbOfHiddenLayers + 1; i++)
            {
                NNLayer  Layer = nn.Layers[i];
                double[] inputs;

                // Récupération des inputs du layer
                if (i != 0)
                {
                    inputs = new double[nn.Layers[i - 1].nbOfNeurons];
                    for (int j = 0; j < nn.Layers[i - 1].nbOfNeurons; j++)
                    {
                        inputs[j] = nn.Layers[i - 1].Neurons[j].output;
                    }
                }
                else
                {
                    inputs = nnInputs;
                }

                // Mise à jour des poids de chaque neurone du layer
                Layer.Neurons.ForEach(Neuron =>
                {
                    for (int j = 0; j < inputs.Length; j++)
                    {
                        Neuron.weights[j] += learningRate * Neuron.delta * inputs[j];
                    }
                    Neuron.w0 += learningRate * Neuron.delta;
                });
            }
        }
Example #3
0
        private int BackwardPropagateError(NNNeuralNetwork nn, double[] expected)
        {
            if (nn.nbOfOutputs == expected.Length)
            {
                // Parcours inverse des layers
                for (int i = nn.nbOfHiddenLayers; i >= 0; i--)
                {
                    NNLayer  Layer  = nn.Layers[i];
                    double[] errors = new double[Layer.nbOfNeurons];

                    // Si ce n'est pas le dernier layer
                    if (i != nn.nbOfHiddenLayers)
                    {
                        // Parcours des neurones du layer courant
                        // Calcul de l'erreur
                        for (int j = 0; j < Layer.nbOfNeurons; j++)
                        {
                            var error = 0.0;
                            // Parcours des neurones du layers précédent
                            nn.Layers[i + 1].Neurons.ForEach(Neuron => {
                                error += Neuron.weights[j] * Neuron.delta;
                            });
                            errors[i] = error;
                        }
                    }
                    // Si c'est le dernier layer
                    else
                    {
                        // Parcours des neurones du layer courant
                        // Calcul de l'erreur
                        for (int j = 0; j < Layer.nbOfNeurons; j++)
                        {
                            errors[j] = (expected[j] - Layer.Neurons[j].output);
                        }
                    }

                    // Parcours des neurones du layer courant
                    // Calcul de delta
                    for (int j = 0; j < Layer.nbOfNeurons; j++)
                    {
                        NNNeuron Neuron = Layer.Neurons[j];
                        Neuron.delta = errors[j] * NNNeuron.TransfertDerivative(Neuron.output);
                    }
                }

                return(0);
            }
            else
            {
                return(1);
            }
        }
Example #4
0
        public int Train(NNNeuralNetwork nn, double[][] dataset, double[][] expectedResults, double learningRate, int nbEpoch)
        {
            /*
             * if (dataset.GetLength(0) != nn.nbOfInputs || expectedResults.GetLength(0) != nn.nbOfOutputs)
             * {
             *  return -1;
             * }
             */

            for (int i = 0; i < nbEpoch; i++)
            {
                double sumError = 0.0;
                for (int j = 0; j < dataset.Length; j++)
                {
                    double[] inputs   = dataset[j];
                    double[] outputs  = nn.ProcessInputs(ref inputs);
                    double[] expected = expectedResults[j];

                    /*
                     * var strBuilder = new StringBuilder();
                     * strBuilder.Append("Line=");
                     * strBuilder.Append(j);
                     * strBuilder.Append(" : inputs=");
                     * for (int k = 0; k < inputs.Length-1; k++)
                     * {
                     *  strBuilder.Append(inputs[k]);
                     *  strBuilder.Append(",");
                     * }
                     * strBuilder.Append(inputs[inputs.Length-1]);
                     *
                     * strBuilder.Append(" ; outputs=");
                     * for (int k = 0; k < outputs.Length - 1; k++)
                     * {
                     *  strBuilder.Append(outputs[k]);
                     *  strBuilder.Append(",");
                     * }
                     * strBuilder.Append(outputs[outputs.Length - 1]);
                     *
                     * strBuilder.Append(" ; expected=");
                     * for (int k = 0; k < expected.Length - 1; k++)
                     * {
                     *  strBuilder.Append(expected[k]);
                     *  strBuilder.Append(",");
                     * }
                     * strBuilder.Append(expected[expected.Length - 1]);
                     *
                     * Console.WriteLine(strBuilder.ToString());
                     */
                    for (int k = 0; k < outputs.Length; k++)
                    {
                        sumError += (expected[k] - outputs[k]);
                    }
                    BackwardPropagateError(nn, expected);
                    UpdateWeights(nn, inputs, learningRate);
                }
                Console.WriteLine(">Epoch={0}, learningRate={1}, error={2}", i, learningRate, sumError);
                Console.WriteLine("---------------------------------------");
            }

            return(0);
        }