Example #1
0
        public static NaiveBayesClassifier Load(List <int[]> instances, int classIndex, double[] classWeightToPrior, double[] classPriorProbability)
        {
            NaiveBayesClassifier classifier = new NaiveBayesClassifier(classWeightToPrior, classPriorProbability);

            classifier.Train(instances, classIndex);
            return(classifier);
        }
Example #2
0
        public static Dictionary <String, List <String> > Classify(NaiveBayesClassifier nb, List <DocItem> docItems)
        {
            Dictionary <String, List <String> > result = new Dictionary <string, List <string> >();

            foreach (var item in docItems)
            {
                var res = nb.predict(item.title + " " + item.body);
                result.Add(item.title, res);
                Console.ForegroundColor = ConsoleColor.Green;
                Console.Write(String.Format("'{0}' is categorised as: ", item.title));
                for (int i = 0; i < res.Count; i++)
                {
                    if (i != res.Count - 1)
                    {
                        Console.Write(res[i].ToUpper() + ", ");
                    }
                    else
                    {
                        Console.WriteLine(res[i].ToUpper());
                    }
                }
            }
            return(result);
        }
Example #3
0
        public static void Main(String[] args)
        {
            string baseDirPath = Path.GetDirectoryName(Path.GetDirectoryName(System.IO.Directory.GetCurrentDirectory()));
            string fileName    = baseDirPath + "\\" + ConfigurationManager.AppSettings["knowledgeBase"];

            Console.WriteLine("Hello, Welcome to the Multinomial Naive Bayes Classifier\n");

            NaiveBayesClassifier nb            = new NaiveBayesClassifier();
            KnowledgeBase        knowledgeBase = null;

            //nb.setChisquareCriticalValue(6.63); //0.01 pvalue

            if (File.Exists(fileName))
            {
                string knowledgeBaseStr = File.ReadAllText(fileName, Encoding.UTF8);
                knowledgeBase = JsonConvert.DeserializeObject <KnowledgeBase>(knowledgeBaseStr);
            }

            if (knowledgeBase == null)
            {
                nb.train();
            }
            else
            {
                nb = new NaiveBayesClassifier(knowledgeBase);
            }

            int userInput;

            do
            {
                userInput = DisplayMenu();
                switch (userInput)
                {
                case 1:
                    nb.train();
                    Console.ReadKey();
                    break;

                case 2:
                {
                    Console.WriteLine("Calculating predictions...");
                    foreach (string file in Directory.EnumerateFiles(baseDirPath + @"\test", "*.json"))        //Environment.CurrentDirectory
                    {
                        Console.ForegroundColor = ConsoleColor.White;
                        Console.WriteLine("\n\nPress any key to classify news in file: " + file.Substring(file.LastIndexOf('\\') + 1).ToUpper());
                        Console.ReadKey();

                        string         json     = File.ReadAllText(file);
                        List <DocItem> docItems = JsonConvert.DeserializeObject <List <DocItem> >(json);
                        Classify(nb, docItems);
                    }

                    foreach (string file in Directory.EnumerateFiles(baseDirPath + @"\test", "*.txt"))        //Environment.CurrentDirectory
                    {
                        Console.ForegroundColor = ConsoleColor.White;
                        Console.WriteLine("\n\nPress any key to classify news in file: " + file.Substring(file.LastIndexOf('\\') + 1).ToUpper());
                        ConsoleKeyInfo resp = Console.ReadKey();

                        string         text     = File.ReadAllText(file);
                        List <DocItem> docItems = nb.parseSimpleTextFile(text);
                        Classify(nb, docItems);
                        Console.ReadKey();
                    }
                }
                break;

                case 3:
                {
                    Console.WriteLine("Ënter filename: (*.txt) or (*.json)");
                    var file     = Console.ReadLine();
                    var filePath = baseDirPath + "\\test\\" + file;
                    if (File.Exists(filePath))
                    {
                        string         text = File.ReadAllText(filePath);
                        List <DocItem> docItems;
                        if (file.Contains("json"))
                        {
                            docItems = JsonConvert.DeserializeObject <List <DocItem> >(text);
                        }
                        else
                        {
                            docItems = nb.parseSimpleTextFile(text);
                        }

                        Classify(nb, docItems);
                    }
                    else
                    {
                        Console.WriteLine("file " + filePath + " does not exist");
                    }
                    Console.ReadKey();
                }
                break;

                case 4:
                    nb.evaluate();
                    Console.ReadKey();
                    break;

                case 5:
                    Console.Clear();
                    break;
                }
            } while (userInput != 6);

            //string appSettingValue = ConfigurationManager.AppSettings["sampleApplication"];

            Console.ForegroundColor = ConsoleColor.White;
            Console.WriteLine("Good Bye !");
            Console.ReadKey();

            //String exampleEn = "I am English";
            //String outputEn = nb.predict(exampleEn);
            //System.out.format("The sentense \"%s\" was classified as \"%s\".%n", exampleEn, outputEn);

            //String exampleFr = "Je suis Français";
            //String outputFr = nb.predict(exampleFr);
            //System.out.format("The sentense \"%s\" was classified as \"%s\".%n", exampleFr, outputFr);

            //String exampleDe = "Ich bin Deutsch";
            //String outputDe = nb.predict(exampleDe);
            //System.out.format("The sentense \"%s\" was classified as \"%s\".%n", exampleDe, outputDe);
        }