Example #1
0
        public static CommonOutputs.CommonEvaluateOutput QuantileRegression(IHostEnvironment env, QuantileRegressionMamlEvaluator.Arguments input)
        {
            Contracts.CheckValue(env, nameof(env));
            var host = env.Register("EvaluateQuantileRegression");

            host.CheckValue(input, nameof(input));
            EntryPointUtils.CheckInputArgs(host, input);

            string label;
            string weight;
            string name;

            MatchColumns(host, input, out label, out weight, out name);
            var evaluator = new QuantileRegressionMamlEvaluator(host, input);
            var data      = TrainUtils.CreateExamples(input.Data, label, null, null, weight, name);
            var metrics   = evaluator.Evaluate(data);

            var warnings           = ExtractWarnings(host, metrics);
            var overallMetrics     = ExtractOverallMetrics(host, metrics, evaluator);
            var perInstanceMetrics = evaluator.GetPerInstanceMetrics(data);

            return(new CommonOutputs.CommonEvaluateOutput()
            {
                Warnings = warnings,
                OverallMetrics = overallMetrics,
                PerInstanceMetrics = perInstanceMetrics
            });
        }
        public static CommonOutputs.CommonEvaluateOutput Ranking(IHostEnvironment env, RankerMamlEvaluator.Arguments input)
        {
            Contracts.CheckValue(env, nameof(env));
            var host = env.Register("EvaluateRanker");

            host.CheckValue(input, nameof(input));
            EntryPointUtils.CheckInputArgs(host, input);

            string label;
            string weight;
            string name;

            MatchColumns(host, input, out label, out weight, out name);
            ISchema schema  = input.Data.Schema;
            string  groupId = TrainUtils.MatchNameOrDefaultOrNull(host, schema,
                                                                  nameof(RankerMamlEvaluator.Arguments.GroupIdColumn),
                                                                  input.GroupIdColumn, DefaultColumnNames.GroupId);
            var evaluator = new RankerMamlEvaluator(host, input);
            var data      = TrainUtils.CreateExamples(input.Data, label, null, groupId, weight, name);
            var metrics   = evaluator.Evaluate(data);

            var warnings           = ExtractWarnings(host, metrics);
            var overallMetrics     = ExtractOverallMetrics(host, metrics, evaluator);
            var perInstanceMetrics = evaluator.GetPerInstanceMetrics(data);

            return(new CommonOutputs.CommonEvaluateOutput()
            {
                Warnings = warnings,
                OverallMetrics = overallMetrics,
                PerInstanceMetrics = perInstanceMetrics
            });
        }
Example #3
0
        private void RunCore(IChannel ch, string cmd)
        {
            Host.AssertValue(ch);
            Host.AssertNonEmpty(cmd);

            ch.Trace("Constructing trainer");
            ITrainer trainer = _trainer.CreateInstance(Host);

            IPredictor inputPredictor = null;

            if (Args.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, Args.InputModelFile, out inputPredictor))
            {
                ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized.");
            }

            ch.Trace("Constructing data pipeline");
            IDataView view = CreateLoader();

            ISchema schema  = view.Schema;
            var     label   = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn), _labelColumn, DefaultColumnNames.Label);
            var     feature = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn), _featureColumn, DefaultColumnNames.Features);
            var     group   = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn), _groupColumn, DefaultColumnNames.GroupId);
            var     weight  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn), _weightColumn, DefaultColumnNames.Weight);
            var     name    = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn), _nameColumn, DefaultColumnNames.Name);

            TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref view, feature, Args.NormalizeFeatures);

            ch.Trace("Binding columns");

            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var data       = TrainUtils.CreateExamples(view, label, feature, group, weight, name, customCols);

            // REVIEW: Unify the code that creates validation examples in Train, TrainTest and CV commands.
            RoleMappedData validData = null;

            if (!string.IsNullOrWhiteSpace(Args.ValidationFile))
            {
                if (!TrainUtils.CanUseValidationData(trainer))
                {
                    ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset.");
                }
                else
                {
                    ch.Trace("Constructing the validation pipeline");
                    IDataView validPipe = CreateRawLoader(dataFile: Args.ValidationFile);
                    validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, view, validPipe);
                    validData = RoleMappedData.Create(validPipe, data.Schema.GetColumnRoleNames());
                }
            }

            var predictor = TrainUtils.Train(Host, ch, data, trainer, _info.LoadNames[0], validData,
                                             Args.Calibrator, Args.MaxCalibrationExamples, Args.CacheData, inputPredictor);

            using (var file = Host.CreateOutputFile(Args.OutputModelFile))
                TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd);
        }
Example #4
0
        private void RunCore(IChannel ch)
        {
            ch.Trace("Constructing data pipeline");
            IDataLoader      loader;
            IPredictor       predictor;
            RoleMappedSchema trainSchema;

            LoadModelObjects(ch, true, out predictor, true, out trainSchema, out loader);
            ch.AssertValue(predictor);
            ch.AssertValueOrNull(trainSchema);
            ch.AssertValue(loader);

            ch.Trace("Binding columns");
            ISchema schema = loader.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.FeatureColumn),
                                                                  Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);

            // Score.
            ch.Trace("Scoring and evaluating");
            IDataScorerTransform scorePipe = ScoreUtils.GetScorer(Args.Scorer, predictor, loader, features, group, customCols, Host, trainSchema);

            // Evaluate.
            var evalComp = Args.Evaluator;

            if (!evalComp.IsGood())
            {
                evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
            }
            var evaluator = evalComp.CreateInstance(Host);
            var data      = TrainUtils.CreateExamples(scorePipe, label, null, group, weight, name, customCols);
            var metrics   = evaluator.Evaluate(data);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            evaluator.PrintOverallResults(ch, Args.SummaryFilename, metrics);
            Dictionary <string, IDataView>[] metricValues = { metrics };
            SendTelemetryMetric(metricValues);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(data);
                var perInstData = TrainUtils.CreateExamples(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }
Example #5
0
        private void RunCore(IChannel ch)
        {
            Host.AssertValue(ch);

            ch.Trace("Creating loader");
            IDataView view = CreateAndSaveLoader(IO.BinaryLoader.LoadName);

            ch.Trace("Binding columns");
            ISchema schema = view.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);

            ch.Trace("Creating evaluator");
            var evalComp = Args.Evaluator;

            if (!evalComp.IsGood())
            {
                evalComp = EvaluateUtils.GetEvaluatorType(ch, view.Schema);
            }
            var evaluator = evalComp.CreateInstance(Host);
            var data      = TrainUtils.CreateExamples(view, label, null, group, weight, name, customCols);
            var metrics   = evaluator.Evaluate(data);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall))
            {
                throw ch.Except("No overall metrics found");
            }
            overall = evaluator.GetOverallResults(overall);
            MetricWriter.PrintOverallMetrics(Host, ch, Args.SummaryFilename, overall, 1);
            evaluator.PrintAdditionalMetrics(ch, metrics);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(data);
                var perInstData = TrainUtils.CreateExamples(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }
        private static RoleMappedData CreateDataFromArgs <TSigTrainer>(IExceptionContext ectx, IDataView input,
                                                                       ArgumentsBase <TSigTrainer> args, out string feat, out string group)
        {
            var schema = input.Schema;

            feat = TrainUtils.MatchNameOrDefaultOrNull(ectx, schema, nameof(args.FeatureColumn), args.FeatureColumn,
                                                       DefaultColumnNames.Features);
            var label = TrainUtils.MatchNameOrDefaultOrNull(ectx, schema, nameof(args.LabelColumn), args.LabelColumn,
                                                            DefaultColumnNames.Label);

            group = TrainUtils.MatchNameOrDefaultOrNull(ectx, schema, nameof(args.GroupColumn), args.GroupColumn,
                                                        DefaultColumnNames.GroupId);
            var weight = TrainUtils.MatchNameOrDefaultOrNull(ectx, schema, nameof(args.WeightColumn), args.WeightColumn,
                                                             DefaultColumnNames.Weight);
            var name = TrainUtils.MatchNameOrDefaultOrNull(ectx, schema, nameof(args.NameColumn), args.NameColumn,
                                                           DefaultColumnNames.Name);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ectx, args.CustomColumn);

            return(TrainUtils.CreateExamples(input, label, feat, group, weight, name, customCols));
        }
        /// <summary>
        /// Callback from the CV method to apply the transforms to the train data.
        /// </summary>
        private RoleMappedData CreateRoleMappedData(IHostEnvironment env, IChannel ch, IDataView data, ITrainer trainer)
        {
            foreach (var kvp in Args.Transform)
            {
                data = kvp.Value.CreateInstance(env, data);
            }

            var    schema   = data.Schema;
            string label    = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.LabelColumn), Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.FeatureColumn), Args.FeatureColumn, DefaultColumnNames.Features);
            string weight   = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.WeightColumn), Args.WeightColumn, DefaultColumnNames.Weight);
            string name     = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.NameColumn), Args.NameColumn, DefaultColumnNames.Name);
            string group    = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.GroupColumn), Args.GroupColumn, DefaultColumnNames.GroupId);

            TrainUtils.AddNormalizerIfNeeded(env, ch, trainer, ref data, features, Args.NormalizeFeatures);

            // Training pipe and examples.
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);

            return(TrainUtils.CreateExamples(data, label, features, group, weight, name, customCols));
        }
Example #8
0
        private static void TrainCore(IHost host, IDataView input, Arguments args, ref VBuffer <Single> scores)
        {
            Contracts.AssertValue(host);
            host.AssertValue(args);
            host.AssertValue(input);
            host.Assert(args.Threshold.HasValue != args.NumSlotsToKeep.HasValue);

            using (var ch = host.Start("Train"))
            {
                ch.Trace("Constructing trainer");
                ITrainer trainer = args.Filter.CreateInstance(host);

                IDataView view = input;

                ISchema schema  = view.Schema;
                var     label   = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(args.LabelColumn), args.LabelColumn, DefaultColumnNames.Label);
                var     feature = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(args.FeatureColumn), args.FeatureColumn, DefaultColumnNames.Features);
                var     group   = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(args.GroupColumn), args.GroupColumn, DefaultColumnNames.GroupId);
                var     weight  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(args.WeightColumn), args.WeightColumn, DefaultColumnNames.Weight);
                var     name    = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(args.NameColumn), args.NameColumn, DefaultColumnNames.Name);

                TrainUtils.AddNormalizerIfNeeded(host, ch, trainer, ref view, feature, args.NormalizeFeatures);

                ch.Trace("Binding columns");

                var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, args.CustomColumn);
                var data       = TrainUtils.CreateExamples(view, label, feature, group, weight, name, customCols);

                var predictor = TrainUtils.Train(host, ch, data, trainer, args.Filter.Kind, null,
                                                 null, 0, args.CacheData);

                var rfs = predictor as IPredictorWithFeatureWeights <Single>;
                Contracts.AssertValue(rfs);
                rfs.GetFeatureWeights(ref scores);
                ch.Done();
            }
        }
        private void RunCore(IChannel ch, string cmd)
        {
            Host.AssertValue(ch);
            Host.AssertNonEmpty(cmd);

            ch.Trace("Constructing trainer");
            ITrainer trainer = Args.Trainer.CreateInstance(Host);

            IPredictor inputPredictor = null;

            if (Args.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, Args.InputModelFile, out inputPredictor))
            {
                ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized.");
            }

            ch.Trace("Constructing the training pipeline");
            IDataView trainPipe = CreateLoader();

            ISchema schema = trainPipe.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn),
                                                                  Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);

            TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref trainPipe, features, Args.NormalizeFeatures);

            ch.Trace("Binding columns");
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var data       = TrainUtils.CreateExamples(trainPipe, label, features, group, weight, name, customCols);

            RoleMappedData validData = null;

            if (!string.IsNullOrWhiteSpace(Args.ValidationFile))
            {
                if (!TrainUtils.CanUseValidationData(trainer))
                {
                    ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset.");
                }
                else
                {
                    ch.Trace("Constructing the validation pipeline");
                    IDataView validPipe = CreateRawLoader(dataFile: Args.ValidationFile);
                    validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, validPipe);
                    validData = RoleMappedData.Create(validPipe, data.Schema.GetColumnRoleNames());
                }
            }

            var predictor = TrainUtils.Train(Host, ch, data, trainer, _info.LoadNames[0], validData,
                                             Args.Calibrator, Args.MaxCalibrationExamples, Args.CacheData, inputPredictor);

            IDataLoader testPipe;

            using (var file = !string.IsNullOrEmpty(Args.OutputModelFile) ?
                              Host.CreateOutputFile(Args.OutputModelFile) : Host.CreateTempFile(".zip"))
            {
                TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd);

                ch.Trace("Constructing the testing pipeline");
                using (var stream = file.OpenReadStream())
                    using (var rep = RepositoryReader.Open(stream, ch))
                        testPipe = LoadLoader(rep, Args.TestFile, true);
            }

            // Score.
            ch.Trace("Scoring and evaluating");
            IDataScorerTransform scorePipe = ScoreUtils.GetScorer(Args.Scorer, predictor, testPipe, features, group, customCols, Host, data.Schema);

            // Evaluate.
            var evalComp = Args.Evaluator;

            if (!evalComp.IsGood())
            {
                evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
            }
            var evaluator = evalComp.CreateInstance(Host);
            var dataEval  = TrainUtils.CreateExamplesOpt(scorePipe, label, features,
                                                         group, weight, name, customCols);
            var metrics = evaluator.Evaluate(dataEval);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall))
            {
                throw ch.Except("No overall metrics found");
            }
            overall = evaluator.GetOverallResults(overall);
            MetricWriter.PrintOverallMetrics(Host, ch, Args.SummaryFilename, overall, 1);
            evaluator.PrintAdditionalMetrics(ch, metrics);
            Dictionary <string, IDataView>[] metricValues = { metrics };
            SendTelemetryMetric(metricValues);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(dataEval);
                var perInstData = TrainUtils.CreateExamples(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }