Example #1
0
        public ExprBoundLambda CreateAnonymousMethod(AggregateType delegateType)
        {
            Debug.Assert(delegateType == null || delegateType.isDelegateType());
            ExprBoundLambda rval = new ExprBoundLambda(delegateType);

            return(rval);
        }
Example #2
0
 public ExprBoundLambda(AggregateType type, Scope argumentScope, Expr expression)
     : base(ExpressionKind.BoundLambda, type)
 {
     Debug.Assert(type != null);
     Debug.Assert(type.isDelegateType());
     Debug.Assert(argumentScope != null);
     ArgumentScope = argumentScope;
     Expression    = expression;
 }
        // UNDONE: Rename to CreateBoundAnonymousFunction
        public EXPRBOUNDLAMBDA CreateAnonymousMethod(AggregateType delegateType)
        {
            Debug.Assert(delegateType == null || delegateType.isDelegateType());
            EXPRBOUNDLAMBDA rval = new EXPRBOUNDLAMBDA();

            rval.kind  = ExpressionKind.EK_BOUNDLAMBDA;
            rval.type  = delegateType;
            rval.flags = 0;
            Debug.Assert(rval != null);
            return(rval);
        }
Example #4
0
        public ExprBoundLambda CreateAnonymousMethod(AggregateType delegateType)
        {
            Debug.Assert(delegateType == null || delegateType.isDelegateType());
            ExprBoundLambda rval = new ExprBoundLambda();

            rval.Kind  = ExpressionKind.EK_BOUNDLAMBDA;
            rval.Type  = delegateType;
            rval.Flags = 0;
            Debug.Assert(rval != null);
            return(rval);
        }
Example #5
0
        ////////////////////////////////////////////////////////////////////////////////

        private TypeArray GetFixedDelegateParameters(AggregateType pDelegateType)
        {
            Debug.Assert(pDelegateType.isDelegateType());

            // We have a delegate where the input types use no unfixed parameters.  Create
            // a substitution context; we can substitute unfixed parameters for themselves
            // since they don't actually occur in the inputs.  (They may occur in the outputs,
            // or there may be input parameters fixed to _unfixed_ method CType variables.
            // Both of those scenarios are legal.)

            CType[] ppMethodParameters = new CType[_pMethodTypeParameters.size];
            for (int iParam = 0; iParam < _pMethodTypeParameters.size; iParam++)
            {
                TypeParameterType pParam = _pMethodTypeParameters.ItemAsTypeParameterType(iParam);
                ppMethodParameters[iParam] = IsUnfixed(iParam) ? pParam : _pFixedResults[iParam];
            }
            SubstContext subsctx = new SubstContext(_pClassTypeArguments.ToArray(), _pClassTypeArguments.size,
                ppMethodParameters, _pMethodTypeParameters.size);
            AggregateType pFixedDelegateType =
                GetTypeManager().SubstType(pDelegateType, subsctx).AsAggregateType();
            TypeArray pFixedDelegateParams =
                pFixedDelegateType.GetDelegateParameters(GetSymbolLoader());
            return pFixedDelegateParams;
        }
Example #6
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.isInterfaceType() || typeSrc.isDelegateType());

            typeDst = null;

            AggregateSymbol aggSym      = typeSrc.GetOwningAggregate();
            AggregateType   aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, bindingContext.ContextForMemberLookup))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return(false);
            }

            TypeArray typeArgs   = typeSrc.GetTypeArgsThis();
            TypeArray typeParams = aggOpenType.GetTypeArgsThis();

            CType[] newTypeArgsTemp = new CType[typeArgs.Count];

            for (int i = 0; i < typeArgs.Count; i++)
            {
                if (semanticChecker.CheckTypeAccess(typeArgs[i], bindingContext.ContextForMemberLookup))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArgs[i];
                    continue;
                }

                if (!typeArgs[i].IsRefType() || !((TypeParameterType)typeParams[i]).Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return(false);
                }

                CType intermediateTypeArg;
                if (GetBestAccessibleType(semanticChecker, bindingContext, typeArgs[i], out intermediateTypeArg))
                {
                    // now we either have a value type (which must be accessible due to the above
                    // check, OR we have an inaccessible type (which must be a ref type). In either
                    // case, the recursion worked out and we are OK to vary this argument.
                    newTypeArgsTemp[i] = intermediateTypeArg;
                    continue;
                }
                else
                {
                    Debug.Assert(false, "GetBestAccessibleType unexpectedly failed on a type that was used as a type parameter");
                    return(false);
                }
            }

            TypeArray newTypeArgs      = semanticChecker.getBSymmgr().AllocParams(typeArgs.Count, newTypeArgsTemp);
            CType     intermediateType = this.GetAggregate(aggSym, typeSrc.outerType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, null /*ErrorHandling*/, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return(false);
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup));
            return(true);
        }
Example #7
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.isInterfaceType() || typeSrc.isDelegateType());

            typeDst = null;

            AggregateSymbol aggSym = typeSrc.GetOwningAggregate();
            AggregateType aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, bindingContext.ContextForMemberLookup()))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return false;
            }

            TypeArray typeArgs = typeSrc.GetTypeArgsThis();
            TypeArray typeParams = aggOpenType.GetTypeArgsThis();
            CType[] newTypeArgsTemp = new CType[typeArgs.size];

            for (int i = 0; i < typeArgs.size; i++)
            {
                if (semanticChecker.CheckTypeAccess(typeArgs.Item(i), bindingContext.ContextForMemberLookup()))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArgs.Item(i);
                    continue;
                }

                if (!typeArgs.Item(i).IsRefType() || !typeParams.Item(i).AsTypeParameterType().Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return false;
                }

                CType intermediateTypeArg;
                if (GetBestAccessibleType(semanticChecker, bindingContext, typeArgs.Item(i), out intermediateTypeArg))
                {
                    // now we either have a value type (which must be accessible due to the above
                    // check, OR we have an inaccessible type (which must be a ref type). In either
                    // case, the recursion worked out and we are OK to vary this argument.
                    newTypeArgsTemp[i] = intermediateTypeArg;
                    continue;
                }
                else
                {
                    Debug.Assert(false, "GetBestAccessibleType unexpectedly failed on a type that was used as a type parameter");
                    return false;
                }
            }

            TypeArray newTypeArgs = semanticChecker.getBSymmgr().AllocParams(typeArgs.size, newTypeArgsTemp);
            CType intermediateType = this.GetAggregate(aggSym, typeSrc.outerType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, null/*ErrorHandling*/, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return false;
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
            return true;
        }
Example #8
0
        //////////////////////////////////////////////////////////////////////////////

        private bool HasDelegateConversion(AggregateType pSource, AggregateType pDest)
        {
            Debug.Assert(pSource != null && pSource.isDelegateType());
            Debug.Assert(pDest != null && pDest.isDelegateType());
            return(HasVariantConversion(pSource, pDest));
        }
Example #9
0
        //////////////////////////////////////////////////////////////////////////////

        private bool HasDelegateConversion(AggregateType pSource, AggregateType pDest)
        {
            Debug.Assert(pSource != null && pSource.isDelegateType());
            Debug.Assert(pDest != null && pDest.isDelegateType());
            return HasVariantConversion(pSource, pDest);
        }
Example #10
0
 public EXPRBOUNDLAMBDA CreateAnonymousMethod(AggregateType delegateType)
 {
     Debug.Assert(delegateType == null || delegateType.isDelegateType());
     EXPRBOUNDLAMBDA rval = new EXPRBOUNDLAMBDA();
     rval.kind = ExpressionKind.EK_BOUNDLAMBDA;
     rval.type = delegateType;
     rval.flags = 0;
     Debug.Assert(rval != null);
     return (rval);
 }