public DiscreteSA4TSP(TSPInstance instance, int initialSolutions, 
		                      int levelLength, double tempReduction)
            : base(initialSolutions, levelLength, tempReduction)
        {
            Instance = instance;
            generatedSolutions = 0;
        }
        public DiscreteSS4TSP(TSPInstance instance, int poolSize, 
		                      int refSetSize, double explorationFactor)
            : base(poolSize, refSetSize, explorationFactor)
        {
            Instance = instance;
            generatedSolutions = 0;
        }
        // Implementation of the 2-opt (first improvement) local search algorithm.
        public static void LocalSearch2OptFirst(TSPInstance instance, int[] path)
        {
            int    tmp;
            double currentFitness, bestFitness;

            bestFitness = Fitness(instance, path);
            for (int j = 1; j < path.Length; j++)
            {
                for (int i = 0; i < j; i++)
                {
                    // Swap the items.
                    tmp     = path[j];
                    path[j] = path[i];
                    path[i] = tmp;

                    // Evaluate the fitness of this new solution.
                    currentFitness = Fitness(instance, path);
                    if (currentFitness < bestFitness)
                    {
                        return;
                    }

                    // Undo the swap.
                    tmp     = path[j];
                    path[j] = path[i];
                    path[i] = tmp;
                }
            }
        }
Example #4
0
 public DiscreteSA4TSP(TSPInstance instance, int initialSolutions,
                       int levelLength, double tempReduction)
     : base(initialSolutions, levelLength, tempReduction)
 {
     Instance           = instance;
     generatedSolutions = 0;
 }
        public static int[] GreedySolution(TSPInstance instance)
        {
            int[]  solution = new int[instance.NumberCities];
            bool[] visited  = new bool[instance.NumberCities];

            for (int i = 0; i < instance.NumberCities; i++)
            {
                if (i == 0)
                {
                    solution[i] = 0;
                }
                else
                {
                    int    currentCity = solution[i - 1];
                    int    nextCity;
                    double bestCost = double.MaxValue;
                    for (nextCity = 1; nextCity < instance.NumberCities; nextCity++)
                    {
                        if (!visited[nextCity] && instance.Costs[currentCity, nextCity] < bestCost)
                        {
                            solution[i] = nextCity;
                            bestCost    = instance.Costs[currentCity, nextCity];
                        }
                    }
                }
                visited[solution[i]] = true;
            }

            return(solution);
        }
        public static int[] GetNeighbor(TSPInstance instance, int[] solution)
        {
            int[] neighbor = new int[instance.NumberCities];
            int   a        = Statistics.RandomDiscreteUniform(0, solution.Length - 1);
            int   b        = a;

            while (b == a)
            {
                b = Statistics.RandomDiscreteUniform(0, solution.Length - 1);
            }
            for (int i = 0; i < solution.Length; i++)
            {
                if (i == a)
                {
                    neighbor[i] = solution[b];
                }
                else if (i == b)
                {
                    neighbor[i] = solution[a];
                }
                else
                {
                    neighbor[i] = solution[i];
                }
            }

            return(neighbor);
        }
        public DiscreteTS4TSP(TSPInstance instance, double rclTreshold, 
		                       int tabuListLength, int neighborChecks)
            : base(tabuListLength, neighborChecks)
        {
            Instance = instance;
            RclTreshold = rclTreshold;
        }
Example #8
0
 public DiscreteSS4TSP(TSPInstance instance, int poolSize,
                       int refSetSize, double explorationFactor)
     : base(poolSize, refSetSize, explorationFactor)
 {
     Instance           = instance;
     generatedSolutions = 0;
 }
 public DiscreteTS4TSP(TSPInstance instance, double rclTreshold,
                       int tabuListLength, int neighborChecks)
     : base(tabuListLength, neighborChecks)
 {
     Instance    = instance;
     RclTreshold = rclTreshold;
 }
 public DiscretePSO4TSP(TSPInstance instance, int partsCount, double prevConf,
                        double neighConf, int[] lowerBounds, int[] upperBounds)
     : base(partsCount, prevConf, neighConf, lowerBounds, upperBounds)
 {
     Instance           = instance;
     generatedSolutions = 0;
 }
 public DiscretePSO4TSP(TSPInstance instance, int partsCount, double prevConf,
                         double neighConf, int[] lowerBounds, int[] upperBounds)
     : base(partsCount, prevConf, neighConf, lowerBounds, upperBounds)
 {
     Instance = instance;
     generatedSolutions = 0;
 }
 public void Start(string fileInput, string fileOutput, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(fileInput);
     int[] assignment = TSPUtils.GreedySolution(instance);
     TSPUtils.LocalSearch2OptFirst(instance, assignment);
     TSPSolution solution = new TSPSolution(instance, assignment);
     solution.Write(fileOutput);
 }
Example #13
0
 public void Start(string inputFile, string outputFile, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(inputFile);
     DiscreteSS ss = new DiscreteSS2OptBest4TSP(instance, poolSize, refSetSize, explorationFactor);
     ss.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, ss.BestSolution);
     solution.Write(outputFile);
 }
Example #14
0
 public DiscretePSO2OptBest4TSP(TSPInstance instance, int partsCount, double prevConf,
                                double neighConf, int[] lowerBounds, int[] upperBounds)
     : base(partsCount, prevConf, neighConf, lowerBounds, upperBounds)
 {
     Instance           = instance;
     LocalSearchEnabled = true;
     generatedSolutions = 0;
 }
 public DiscretePSO2OptFirst4TSP(TSPInstance instance, int partsCount, double prevConf,
                         double neighConf, int[] lowerBounds, int[] upperBounds)
     : base(partsCount, prevConf, neighConf, lowerBounds, upperBounds)
 {
     Instance = instance;
     LocalSearchEnabled = true;
     generatedSolutions = 0;
 }
Example #16
0
 public DiscreteILS2OptFirst4TSP(TSPInstance instance, int restartIterations,
                                 int[] lowerBounds, int[] upperBounds)
     : base(restartIterations, lowerBounds, upperBounds)
 {
     Instance           = instance;
     RepairEnabled      = true;
     generatedSolutions = 0;
 }
 public DiscreteMA4TSP(TSPInstance instance, int popSize, double mutationProbability,
                       int[] lowerBounds, int[] upperBounds)
     : base(popSize, mutationProbability, lowerBounds, upperBounds)
 {
     Instance           = instance;
     RepairEnabled      = true;
     generatedSolutions = 0;
 }
Example #18
0
        public DiscreteMA4TSP(TSPInstance instance, int popSize, double mutationProbability,
		                      int[] lowerBounds, int[] upperBounds)
            : base(popSize, mutationProbability, lowerBounds, upperBounds)
        {
            Instance = instance;
            RepairEnabled = true;
            generatedSolutions = 0;
        }
 public DiscreteUMDA4TSP(TSPInstance instance, int popSize,
                         double truncFactor, int[] lowerBounds,
                         int[] upperBounds)
     : base(popSize, truncFactor, lowerBounds, upperBounds)
 {
     Instance      = instance;
     RepairEnabled = true;
 }
        public DiscreteUMDA4TSP(TSPInstance instance, int popSize, 
		                        double truncFactor, int[] lowerBounds, 
		                        int[] upperBounds)
            : base(popSize, truncFactor, lowerBounds, upperBounds)
        {
            Instance = instance;
            RepairEnabled = true;
        }
        public DiscreteILS2OptFirst4TSP(TSPInstance instance, int restartIterations, 
		                                 int[] lowerBounds, int[] upperBounds)
            : base(restartIterations, lowerBounds, upperBounds)
        {
            Instance = instance;
            RepairEnabled = true;
            generatedSolutions = 0;
        }
        public DiscreteHMSAwGRASP2OptFirst4TSP(TSPInstance instance, double rclThreshold, 
		                                       int graspIterations, int initialSolutions, 
		                                       int levelLength, double tempReduction)
            : base(initialSolutions, levelLength, tempReduction)
        {
            GRASP = new DiscreteGRASP2OptFirst4TSP(instance, rclThreshold);
            Instance = instance;
            GRASPIterations = graspIterations;
        }
 public void Start(string inputFile, string outputFile, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(inputFile);
     int levelLength = (int) Math.Ceiling(levelLengthFactor * (instance.NumberCities * (instance.NumberCities - 1)));
     DiscreteHMSAwGRASP2OptBest4TSP hm = new DiscreteHMSAwGRASP2OptBest4TSP(instance, rclTreshold, graspIterations, initialSolutions, levelLength, tempReduction);
     hm.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, hm.BestSolution);
     solution.Write(outputFile);
 }
 public DiscreteHMTSwGRASP2OptBest4TSP(TSPInstance instance, double rclThreshold,
                                       int graspIterations, int tabuListLength,
                                       int neighborChecks)
     : base(tabuListLength, neighborChecks)
 {
     GRASP           = new DiscreteGRASP2OptBest4TSP(instance, rclThreshold);
     Instance        = instance;
     GRASPIterations = graspIterations;
 }
        public DiscreteHMTSwGRASP2OptBest4TSP(TSPInstance instance, double rclThreshold, 
		                                      int graspIterations, int tabuListLength, 
		                                      int neighborChecks)
            : base(tabuListLength, neighborChecks)
        {
            GRASP = new DiscreteGRASP2OptBest4TSP(instance, rclThreshold);
            Instance = instance;
            GRASPIterations = graspIterations;
        }
 public void Start(string inputFile, string outputFile, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(inputFile);
     MaxMinAntSystem aco = new MaxMinAntSystem2OptBest4TSP(instance, numberAnts, rho, alpha, beta, maxReinit, candidateLength, candidateWeight);
     // Solving the problem and writing the best solution found.
     aco.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, aco.BestSolution);
     solution.Write(outputFile);
 }
Example #27
0
 public void Start(string fileInput, string fileOutput, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(fileInput);
     int levelLength = (int) Math.Ceiling(levelLengthFactor * (instance.NumberCities * (instance.NumberCities - 1)));
     DiscreteSA sa = new DiscreteSA4TSP(instance, initialSolutions, levelLength, tempReduction);
     sa.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, sa.BestSolution);
     solution.Write(fileOutput);
 }
 public DiscreteHMSAwGRASP2OptBest4TSP(TSPInstance instance, double rclThreshold,
                                       int graspIterations, int initialSolutions,
                                       int levelLength, double tempReduction)
     : base(initialSolutions, levelLength, tempReduction)
 {
     GRASP           = new DiscreteGRASP2OptBest4TSP(instance, rclThreshold);
     Instance        = instance;
     GRASPIterations = graspIterations;
 }
Example #29
0
        public void Start(string inputFile, string outputFile, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(inputFile);
            DiscreteSS  ss       = new DiscreteSS4TSP(instance, poolSize, refSetSize, explorationFactor);

            ss.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, ss.BestSolution);

            solution.Write(outputFile);
        }
Example #30
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            int[] assignment = TSPUtils.GreedySolution(instance);
            TSPUtils.LocalSearch2OptFirst(instance, assignment);
            TSPSolution solution = new TSPSolution(instance, assignment);

            solution.Write(fileOutput);
        }
Example #31
0
 public void Start(string inputFile, string outputFile, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(inputFile);
     int neighborChecks = (int) Math.Ceiling(neighborChecksFactor * (instance.NumberCities * (instance.NumberCities - 1)));
     int tabuListLength = (int) Math.Ceiling(tabuListFactor * instance.NumberCities);
     DiscreteTS ts = new DiscreteTS4TSP(instance, rclTreshold, tabuListLength, neighborChecks);
     ts.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, ts.BestSolution);
     solution.Write(outputFile);
 }
Example #32
0
        // Implementation of the GRC solution's construction algorithm.
        public static int[] GRCSolution(TSPInstance instance, double rclThreshold)
        {
            int numCities = instance.NumberCities;
            int[] path = new int[instance.NumberCities];
            int totalCities = numCities;
            int index = 0;
            double best = 0;
            double cost = 0;
            int city = 0;
            // Restricted Candidate List.
            SortedList<double, int> rcl = new SortedList<double, int>();
            // Available cities.
            bool[] visited = new bool[numCities];

            path[0] = Statistics.RandomDiscreteUniform(0, numCities-1);
            visited[path[0]] = true;
            numCities --;

            while (numCities > 0) {
                rcl = new SortedList<double, int>();
                for (int i = 0; i < totalCities; i++) {
                    if (!visited[i]) {
                        cost = instance.Costs[path[index], i];
                        if(rcl.Count == 0) {
                            best = cost;
                            rcl.Add(cost, i);
                        }
                        else if( cost < best) {
                            // The new city is the new best;
                            best = cost;
                            for (int j = rcl.Count-1; j > 0; j--) {
                                if (rcl.Keys[j] > rclThreshold * best) {
                                    rcl.RemoveAt(j);
                                }
                                else {
                                    break;
                                }
                            }
                            rcl.Add(cost, i);
                        }
                        else if (cost < rclThreshold * best) {
                            // The new city is a mostly good candidate.
                            rcl.Add(cost, i);
                        }
                    }
                }
                city = rcl.Values[Statistics.RandomDiscreteUniform(0, rcl.Count-1)];
                index++;
                visited[city] = true;
                path[index] = city;
                numCities--;
            }

            return path;
        }
        public void Start(string inputFile, string outputFile, int timeLimit)
        {
            TSPInstance instance               = new TSPInstance(inputFile);
            int         levelLength            = (int)Math.Ceiling(levelLengthFactor * (instance.NumberCities * (instance.NumberCities - 1)));
            DiscreteHMSAwGRASP2OptFirst4TSP hm = new DiscreteHMSAwGRASP2OptFirst4TSP(instance, rclTreshold, graspIterations, initialSolutions, levelLength, tempReduction);

            hm.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, hm.BestSolution);

            solution.Write(outputFile);
        }
Example #34
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance    = new TSPInstance(fileInput);
            int         levelLength = (int)Math.Ceiling(levelLengthFactor * (instance.NumberCities * (instance.NumberCities - 1)));
            DiscreteSA  sa          = new DiscreteSA4TSP(instance, initialSolutions, levelLength, tempReduction);

            sa.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, sa.BestSolution);

            solution.Write(fileOutput);
        }
Example #35
0
        public static double Fitness(TSPInstance instance, int[] path)
        {
            double cost = 0;

            for (int i = 1; i < path.Length; i++) {
                cost += instance.Costs[path[i-1],path[i]];
            }
            cost += instance.Costs[path[path.Length-1],path[0]];

            return cost;
        }
Example #36
0
        public void Start(string inputFile, string outputFile, int timeLimit)
        {
            TSPInstance     instance = new TSPInstance(inputFile);
            MaxMinAntSystem aco      = new MaxMinAntSystem2OptBest4TSP(instance, numberAnts, rho, alpha, beta, maxReinit, candidateLength, candidateWeight);

            // Solving the problem and writing the best solution found.
            aco.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, aco.BestSolution);

            solution.Write(outputFile);
        }
Example #37
0
        public void Start(string inputFile, string outputFile, int timeLimit)
        {
            TSPInstance instance       = new TSPInstance(inputFile);
            int         neighborChecks = (int)Math.Ceiling(neighborChecksFactor * (instance.NumberCities * (instance.NumberCities - 1)));
            int         tabuListLength = (int)Math.Ceiling(tabuListFactor * instance.NumberCities);
            DiscreteTS  ts             = new DiscreteTS4TSP(instance, rclTreshold, tabuListLength, neighborChecks);

            ts.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, ts.BestSolution);

            solution.Write(outputFile);
        }
Example #38
0
        public static double Distance(TSPInstance instance, int[] a, int[] b)
        {
            double distance = 0;

            for (int i = 0; i < a.Length - 1; i++) {
                if (a[i] != b[i] || a[i+1] != b[i+1]) {
                    distance += 1;
                }
            }

            return distance;
        }
        public static double Fitness(TSPInstance instance, int[] path)
        {
            double cost = 0;

            for (int i = 1; i < path.Length; i++)
            {
                cost += instance.Costs[path[i - 1], path[i]];
            }
            cost += instance.Costs[path[path.Length - 1], path[0]];

            return(cost);
        }
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the GRASP for this instance of the problem.
            DiscreteGRASP grasp = new DiscreteGRASP2OptBest4TSP(instance, rclThreshold);

            // Solving the problem and writing the best solution found.
            grasp.Run(timeLimit - (int)timePenalty, RunType.TimeLimit);
            TSPSolution solution = new TSPSolution(instance, grasp.BestSolution);
            solution.Write(fileOutput);
        }
Example #41
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the GRASP for this instance of the problem.
            DiscreteGRASP grasp = new DiscreteGRASP2OptFirst4TSP(instance, rclThreshold);

            // Solving the problem and writing the best solution found.
            grasp.Run(timeLimit - (int)timePenalty, RunType.TimeLimit);
            TSPSolution solution = new TSPSolution(instance, grasp.BestSolution);

            solution.Write(fileOutput);
        }
        public static double Distance(TSPInstance instance, int[] a, int[] b)
        {
            double distance = 0;

            for (int i = 0; i < a.Length - 1; i++)
            {
                if (a[i] != b[i] || a[i + 1] != b[i + 1])
                {
                    distance += 1;
                }
            }

            return(distance);
        }
 public void Start(string inputFile, string outputFile, int timeLimit)
 {
     TSPInstance instance = new TSPInstance(inputFile);
     int[] lowerBounds = new int[instance.NumberCities];
     int[] upperBounds = new int[instance.NumberCities];
     for (int i = 0; i < instance.NumberCities; i++) {
         lowerBounds[i] = 0;
         upperBounds[i] = instance.NumberCities - 1;
     }
     DiscreteILS ils = new DiscreteILS2OptFirst4TSP(instance, restartIterations, lowerBounds, upperBounds);
     ils.Run(timeLimit - timePenalty);
     TSPSolution solution = new TSPSolution(instance, ils.BestSolution);
     solution.Write(outputFile);
 }
        public static void Repair(TSPInstance instance, int[] individual)
        {
            int visitedCitiesCount = 0;

            bool[] visitedCities     = new bool[instance.NumberCities];
            bool[] repeatedPositions = new bool[instance.NumberCities];

            // Get information to decide if the individual is valid.
            for (int i = 0; i < instance.NumberCities; i++)
            {
                if (!visitedCities[individual[i]])
                {
                    visitedCitiesCount          += 1;
                    visitedCities[individual[i]] = true;
                }
                else
                {
                    repeatedPositions[i] = true;
                }
            }

            // If the individual is invalid, make it valid.
            if (visitedCitiesCount != instance.NumberCities)
            {
                for (int i = 0; i < repeatedPositions.Length; i++)
                {
                    if (repeatedPositions[i])
                    {
                        int count = Statistics.RandomDiscreteUniform(1, instance.NumberCities - visitedCitiesCount);
                        for (int c = 0; c < visitedCities.Length; c++)
                        {
                            if (!visitedCities[c])
                            {
                                count -= 1;
                                if (count == 0)
                                {
                                    individual[i]        = c;
                                    repeatedPositions[i] = false;
                                    visitedCities[c]     = true;
                                    visitedCitiesCount  += 1;
                                    break;
                                }
                            }
                        }
                    }
                }
            }
        }
        public void Start(string inputFile, string outputFile, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(inputFile);

            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++)
            {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscreteILS ils = new DiscreteILS2OptBest4TSP(instance, restartIterations, lowerBounds, upperBounds);

            ils.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, ils.BestSolution);

            solution.Write(outputFile);
        }
Example #46
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the PSO for this instance of the problem.
            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++) {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscretePSO pso = new DiscretePSO4TSP(instance, (int)particlesCount, prevConf, neighConf, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            pso.Run(timeLimit - (int)timePenalty);
            TSPSolution solution = new TSPSolution(instance, pso.BestPosition);
            solution.Write(fileOutput);
        }
Example #47
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the MA for this instance of the problem.
            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++) {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscreteMA memetic = new DiscreteMA4TSP(instance, (int)popSize, mutProbability, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            memetic.Run(timeLimit - (int)timePenalty);
            TSPSolution solution = new TSPSolution(instance, memetic.BestIndividual);
            solution.Write(fileOutput);
        }
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the UMDA for this instance of the problem.
            int popSize = (int) Math.Ceiling(popFactor * instance.NumberCities);
            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++) {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscreteUMDA umda = new DiscreteUMDA2OptFirst4TSP(instance, popSize, truncFactor, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            umda.Run(timeLimit - (int)timePenalty);
            TSPSolution solution = new TSPSolution(instance, umda.BestIndividual);
            solution.Write(fileOutput);
        }
        public static int[] RandomSolution(TSPInstance instance)
        {
            int[]      solution = new int[instance.NumberCities];
            List <int> cities   = new List <int>();

            for (int city = 0; city < instance.NumberCities; city++)
            {
                cities.Add(city);
            }
            for (int i = 0; i < instance.NumberCities; i++)
            {
                int cityIndex = Statistics.RandomDiscreteUniform(0, cities.Count - 1);
                int city      = cities[cityIndex];
                cities.RemoveAt(cityIndex);
                solution[i] = city;
            }

            return(solution);
        }
Example #50
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the GA for this instance of the problem.
            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++)
            {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscreteGA genetic = new DiscreteGA2OptFirst4TSP(instance, (int)popSize, mutProbability, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            genetic.Run(timeLimit - (int)timePenalty);
            TSPSolution solution = new TSPSolution(instance, genetic.BestIndividual);

            solution.Write(fileOutput);
        }
Example #51
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the PSO for this instance of the problem.
            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++)
            {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscretePSO pso = new DiscretePSO2OptFirst4TSP(instance, (int)particlesCount, prevConf, neighConf, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            pso.Run(timeLimit - (int)timePenalty);
            TSPSolution solution = new TSPSolution(instance, pso.BestPosition);

            solution.Write(fileOutput);
        }
        public MaxMinAntSystem2OptBest4TSP(TSPInstance instance, int numberAnts, double rho, 
		                                   double alpha, double beta, int maxReinit, 
		                                   int candidateLength, double candidateWeight)
            : base(instance.NumberCities, TSPUtils.Fitness(instance, TSPUtils.RandomSolution(instance)),
			       numberAnts, rho, alpha, beta, maxReinit)
        {
            Instance = instance;
            this.candidateWeight = candidateWeight;
            // Build the candidate list.
            this.candidateLists = new List<Tuple<double,int>>[Instance.NumberCities];
            for (int i = 0; i < Instance.NumberCities; i++) {
                this.candidateLists[i] = new List<Tuple<double,int>>();
                for (int j = 0; j < Instance.NumberCities; j++) {
                    if (i != j) {
                        this.candidateLists[i].Add(new Tuple<double,int>(Instance.Costs[i,j], j));
                    }
                }
                this.candidateLists[i].Sort();
                this.candidateLists[i].RemoveRange(candidateLength, this.candidateLists[i].Count - candidateLength);
            }
        }
        // Implementation of the 2-opt (best improvement) local search algorithm.
        public static void LocalSearch2OptBest(TSPInstance instance, int[] path)
        {
            int    tmp;
            int    firstSwapItem = 0, secondSwapItem = 0;
            double currentFitness, bestFitness;

            bestFitness = Fitness(instance, path);
            for (int j = 1; j < path.Length; j++)
            {
                for (int i = 0; i < j; i++)
                {
                    // Swap the items.
                    tmp     = path[j];
                    path[j] = path[i];
                    path[i] = tmp;

                    // Evaluate the fitness of this new solution.
                    currentFitness = Fitness(instance, path);
                    if (currentFitness < bestFitness)
                    {
                        firstSwapItem  = j;
                        secondSwapItem = i;
                        bestFitness    = currentFitness;
                    }

                    // Undo the swap.
                    tmp     = path[j];
                    path[j] = path[i];
                    path[i] = tmp;
                }
            }

            // Use the best assignment.
            if (firstSwapItem != secondSwapItem)
            {
                tmp = path[firstSwapItem];
                path[firstSwapItem]  = path[secondSwapItem];
                path[secondSwapItem] = tmp;
            }
        }
Example #54
0
        public static int[] GetNeighbor(TSPInstance instance, int[] solution)
        {
            int[] neighbor = new int[instance.NumberCities];
            int a = Statistics.RandomDiscreteUniform(0, solution.Length - 1);
            int b = a;
            while (b == a) {
                b = Statistics.RandomDiscreteUniform(0, solution.Length - 1);
            }
            for (int i = 0; i < solution.Length; i++) {
                if (i == a) {
                    neighbor[i] = solution[b];
                }
                else if (i == b) {
                    neighbor[i] = solution[a];
                }
                else {
                    neighbor[i] = solution[i];
                }
            }

            return neighbor;
        }
Example #55
0
        public void Start(string fileInput, string fileOutput, int timeLimit)
        {
            TSPInstance instance = new TSPInstance(fileInput);

            // Setting the parameters of the UMDA for this instance of the problem.
            int popSize = (int)Math.Ceiling(popFactor * instance.NumberCities);

            int[] lowerBounds = new int[instance.NumberCities];
            int[] upperBounds = new int[instance.NumberCities];
            for (int i = 0; i < instance.NumberCities; i++)
            {
                lowerBounds[i] = 0;
                upperBounds[i] = instance.NumberCities - 1;
            }
            DiscreteUMDA umda = new DiscreteUMDA2OptBest4TSP(instance, popSize, truncFactor, lowerBounds, upperBounds);

            // Solving the problem and writing the best solution found.
            umda.Run(timeLimit - timePenalty);
            TSPSolution solution = new TSPSolution(instance, umda.BestIndividual);

            solution.Write(fileOutput);
        }
Example #56
0
 public MaxMinAntSystem2OptFirst4TSP(TSPInstance instance, int numberAnts, double rho,
                                     double alpha, double beta, int maxReinit,
                                     int candidateLength, double candidateWeight)
     : base(instance.NumberCities, TSPUtils.Fitness(instance, TSPUtils.RandomSolution(instance)),
            numberAnts, rho, alpha, beta, maxReinit)
 {
     Instance             = instance;
     this.candidateWeight = candidateWeight;
     // Build the candidate list.
     this.candidateLists = new List <Tuple <double, int> > [Instance.NumberCities];
     for (int i = 0; i < Instance.NumberCities; i++)
     {
         this.candidateLists[i] = new List <Tuple <double, int> >();
         for (int j = 0; j < Instance.NumberCities; j++)
         {
             if (i != j)
             {
                 this.candidateLists[i].Add(new Tuple <double, int>(Instance.Costs[i, j], j));
             }
         }
         this.candidateLists[i].Sort();
         this.candidateLists[i].RemoveRange(candidateLength, this.candidateLists[i].Count - candidateLength);
     }
 }
Example #57
0
        public static void Repair(TSPInstance instance, int[] individual)
        {
            int visitedCitiesCount = 0;
            bool[] visitedCities = new bool[instance.NumberCities];
            bool[] repeatedPositions = new bool[instance.NumberCities];

            // Get information to decide if the individual is valid.
            for (int i = 0; i < instance.NumberCities; i++) {
                if (!visitedCities[individual[i]]) {
                    visitedCitiesCount += 1;
                    visitedCities[individual[i]] = true;
                }
                else {
                    repeatedPositions[i] = true;
                }
            }

            // If the individual is invalid, make it valid.
            if (visitedCitiesCount != instance.NumberCities) {
                for (int i = 0; i < repeatedPositions.Length; i++) {
                    if (repeatedPositions[i]) {
                        int count = Statistics.RandomDiscreteUniform(1, instance.NumberCities - visitedCitiesCount);
                        for (int c = 0; c < visitedCities.Length; c++) {
                            if (!visitedCities[c]) {
                                count -= 1;
                                if (count == 0) {
                                    individual[i] = c;
                                    repeatedPositions[i] = false;
                                    visitedCities[c] = true;
                                    visitedCitiesCount += 1;
                                    break;
                                }
                            }
                        }
                    }
                }
            }
        }
Example #58
0
        public static int[] RandomSolution(TSPInstance instance)
        {
            int[] solution = new int[instance.NumberCities];
            List<int> cities = new List<int>();

            for (int city = 0; city < instance.NumberCities; city++) {
                cities.Add(city);
            }
            for (int i = 0; i < instance.NumberCities; i++) {
                int cityIndex = Statistics.RandomDiscreteUniform(0, cities.Count - 1);
                int city = cities[cityIndex];
                cities.RemoveAt(cityIndex);
                solution[i] = city;
            }

            return solution;
        }
Example #59
0
 public TSPSolution(TSPInstance instance, int[] path)
 {
     Instance = instance;
     Path = path;
 }
 public DiscreteGRASP2OptBest4TSP(TSPInstance instance, double rclThreshold)
     : base(rclThreshold)
 {
     Instance = instance;
 }