public MultivariateSample CreateMultivariateNormalSample(ColumnVector M, SymmetricMatrix C, int n)
        {
            int d = M.Dimension;

            MultivariateSample S = new MultivariateSample(d);

            SquareMatrix A = C.CholeskyDecomposition().SquareRootMatrix();

            Random rng = new Random(1);
            Distribution normal = new NormalDistribution();

            for (int i = 0; i < n; i++) {

                // create a vector of normal deviates
                ColumnVector V = new ColumnVector(d);
                for (int j = 0; j < d; j++) {
                    double y = rng.NextDouble();
                    double z = normal.InverseLeftProbability(y);
                    V[j] = z;
                }

                // form the multivariate distributed vector
                ColumnVector X = M + A * V;

                // add it to the sample
                S.Add(X);

            }

            return (S);
        }
        public void SparseSquareMatrixAgreement()
        {
            int d = 6;
            SparseSquareMatrix A = new SparseSquareMatrix(d);
            SquareMatrix B = new SquareMatrix(d);

            Random rng = new Random(1);
            for (int i = 0; i < 2 * d; i++) {
                int r = (int) Math.Floor(rng.NextDouble() * d);
                int c = (int) Math.Floor(rng.NextDouble() * d);
                A[r, c] = 2.0 * rng.NextDouble() - 1.0;
                B[r, c] = A[r, c];
            }

            RowVector u = new RowVector(d);
            ColumnVector v = new ColumnVector(d);
            for (int i = 0; i < d; i++) {
                u[i] = 2.0 * rng.NextDouble() - 1.0;
                v[i] = 2.0 * rng.NextDouble() - 1.0;
            }

            RowVector uA = u * A;
            RowVector uB = u * B;
            Assert.IsTrue(TestUtilities.IsNearlyEqual(uA, uB));

            ColumnVector Av = A * v;
            ColumnVector Bv = B * v;
            Assert.IsTrue(TestUtilities.IsNearlyEqual(Av, Bv));
        }
Example #3
0
 // one-parameter constructor
 internal FitResult(double p1, double dp1, TestResult test)
 {
     this.parameters = new ColumnVector(new double[] {p1}, 0, 1, 1, true);
     this.covarianceMatrix = new SymmetricMatrix(1);
     this.covarianceMatrix[0, 0] = dp1 * dp1;
     this.covarianceMatrix.IsReadOnly = true;
     this.test = test;
 }
Example #4
0
        // n-parameter constructor
        internal FitResult(IList<double> parameters, SymmetricMatrix covariance, TestResult test)
        {
            Debug.Assert(parameters != null);
            Debug.Assert(covariance != null);
            Debug.Assert(parameters.Count == covariance.Dimension);

            // This is a bit of a hack to ensure we store read-only ColumnVectors and SymmetricMatrix objects.
            this.parameters = ConvertListToReadOnlyVector(parameters);
            this.covarianceMatrix = covariance;
            this.covarianceMatrix.IsReadOnly = true;

            this.test = test;
        }
Example #5
0
        public Network(int windowSize, int imagesNumber, double learningCoefficient, double maxError, int maxIterations)
        {
            this.windowSize = windowSize;
            this.imagesNumber = imagesNumber;
            this.learningCoefficient = learningCoefficient;
            this.maxError = maxError;
            this.maxIterations = maxIterations;

            weightMatrix1 = new RectangularMatrix(imagesNumber, windowSize + imagesNumber);
            CreateRandomMatrix(weightMatrix1);
            weightMatrix2 = new RowVector(imagesNumber);
            CreateRandomRowVector(weightMatrix2);
            contextNeurons = new ColumnVector(imagesNumber);
        }
Example #6
0
        public static ColumnVector ConcatVertically(ColumnVector A, ColumnVector B)
        {
            ColumnVector result = new ColumnVector(A.RowCount + B.RowCount);

            for (int i = 0; i < A.RowCount; i++)
            {
                result[i] = A[i];
            }

            for (int i = A.RowCount; i < A.RowCount + B.RowCount; i++)
            {
                result[i] = B[i - A.RowCount];
            }

            return result;
        }
        /// <summary>
        /// Computes the inverse of the original matrix.
        /// </summary>
        /// <returns>The matrix M<sup>-1</sup>.</returns>
        public SquareMatrix Inverse()
        {
            SquareMatrix TI = new SquareMatrix(n);
            for (int c = 0; c < n; c++) {

                ColumnVector e = new ColumnVector(n);
                e[c] = 1.0;

                ColumnVector v = Solve(e);

                for (int r = 0; r < n; r++) {
                    TI[r, c] = v[r];
                }

            }

            return (TI);
        }
Example #8
0
        public void doWork()
        {
            matrix.Fill((j, i) => array[i, j]);
            SquareQRDecomposition qr = matrix.QRDecomposition();
            SquareLUDecomposition lu = matrix.LUDecomposition();

            ColumnVector qrresult = qr.Solve(vector);
            ColumnVector luresult = lu.Solve(vector);

            ColumnVector c6 = matrix.Column(6);
            RowVector r2 = matrix.Row(2);
            SquareMatrix inv = matrix.Inverse();

            ColumnVector result = new ColumnVector(inv.Dimension);
            for (int i = 0; i < matrix.Dimension; ++i) {
                for (int j = 0; j < matrix.Dimension; ++j) {
                    result[i] += matrix[i, j] * qrresult[j];
                }
            }
        }
        public void Ackley()
        {
            // Ackley's function has many local minima, and a global minimum at (0, 0) -> 0.

            Func<IList<double>, double> function = (IList<double> x) => {
                double s = 0.0;
                double c = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s += x[i] * x[i];
                    c += Math.Cos(2.0 * Math.PI * x[i]);
                }
                return (-20.0 * Math.Exp(-0.2 * Math.Sqrt(s / x.Count)) - Math.Exp(c / x.Count) + 20.0 + Math.E);
            };

            EvaluationSettings settings = new EvaluationSettings() { AbsolutePrecision = 1.0E-8, EvaluationBudget = 10000000 };

            for (int n = 2; n < 16; n = (int) Math.Round(AdvancedMath.GoldenRatio * n)) {
                Console.WriteLine("n={0}", n);

                Interval[] box = new Interval[n];
                for (int i = 0; i < box.Length; i++) box[i] = Interval.FromEndpoints(-32.0, 32.0);

                MultiExtremum minimum = MultiFunctionMath.FindGlobalMinimum(function, box, settings);

                Console.WriteLine(minimum.EvaluationCount);
                Console.WriteLine(minimum.Value);
                foreach (double coordinate in minimum.Location) Console.WriteLine(coordinate);

                Assert.IsTrue(minimum.Dimension == n);

                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = 2.0 * minimum.Precision }));

                ColumnVector solution = new ColumnVector(n);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Location, solution, new EvaluationSettings() { AbsolutePrecision = 2.0 * Math.Sqrt(minimum.Precision) }));

            }
        }
        public void Beale()
        {
            // Beale is a very interesting function.
            // The only local minimum is at (3,1/2) where the function value is 0.
            // But along the lines (0,+\infty) and (-\infty,1) the function value decreases toward 0 at infinity.
            // From the point of view of a local minimizer those are perfectly valid downhill directions and
            // if the minimzer gets caught in them it will move toward infinity until its evaluation budget is
            // exhausted. Starting from y > 0 will probably keep us safe, or we can do bounded optimization.

            Func<IList<double>, double> fBeale = (IList<double> x) =>
                MoreMath.Sqr(1.5 - x[0] + x[0] * x[1]) +
                MoreMath.Sqr(2.25 - x[0] + x[0] * x[1] * x[1]) +
                MoreMath.Sqr(2.625 - x[0] + x[0] * x[1] * x[1] * x[1]);

            ColumnVector start = new ColumnVector(2.0, 1.0);

            MultiExtremum min = MultiFunctionMath.FindLocalMinimum(fBeale, start);

            Console.WriteLine(min.EvaluationCount);
            Console.WriteLine(min.Value);

            ColumnVector solution = new ColumnVector(3.0, 0.5);
            Assert.IsTrue(min.Dimension == 2);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = min.Precision }));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Location, solution, Math.Sqrt(TestUtilities.TargetPrecision)));
        }
        public void Vardim()
        {
            // This function is described by Powell in his NEWOUA paper as one that caused problems for the simplest formulation of that minimizer.

            Func<IList<double>, double> f = (IList<double> x) => {
                double s1 = 0.0;
                double s2 = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s1 += i * (x[i] - 1.0);
                    s2 += MoreMath.Sqr(x[i] - 1.0);
                }
                return (s2 + s1 * s1 + s1 * s1 * s1 * s1);
            };

            for (int n = 2; n < 8; n++) {

                Console.WriteLine("n = {0}", n);

                ColumnVector start = new ColumnVector(n);
                ColumnVector solution = new ColumnVector(n);
                solution.Fill((i, j) => 1.0);

                MultiExtremum min = MultiFunctionMath.FindLocalMinimum(f, start);

                Console.WriteLine(min.EvaluationCount);
                Console.WriteLine("{0} ({1}) ?= 0.0", min.Value, min.Precision);

                Assert.IsTrue(min.Dimension == n);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = 4.0 * min.Precision }));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Location, solution, new EvaluationSettings() { RelativePrecision = Math.Sqrt(4.0 * min.Precision) }));

            }
        }
        public void SumOfPowers()
        {
            // This test is difficult because the minimum is emphatically not quadratic.
            // We do get close to the minimum but we massivly underestimate our error.

            Func<IList<double>, double> function = (IList<double> x) => {
                double s = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s += MoreMath.Pow(Math.Abs(x[i]), i + 2);
                }
                return (s);
            };

            for (int n = 2; n < 8; n++) {

                Console.WriteLine(n);

                ColumnVector start = new ColumnVector(n);
                for (int i = 0; i < n; i++) start[i] = 1.0;

                EvaluationSettings settings = new EvaluationSettings() { AbsolutePrecision = 1.0E-8, EvaluationBudget = 32 * n * n * n };

                MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(function, start, settings);

                Console.WriteLine(minimum.EvaluationCount);
                Console.WriteLine("{0} {1}", minimum.Value, minimum.Precision);
                Console.WriteLine("|| {0} {1} ... || = {2}", minimum.Location[0], minimum.Location[1], minimum.Location.FrobeniusNorm());

                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = 1.0E-4 }));
                //Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Location, new ColumnVector(n), new EvaluationSettings() { AbsolutePrecision = 1.0E-2 }));

            }
        }
        public void ThreeHumpCamel()
        {
            // This function has three local minima, so not at all starting points should be expected to bring us to the global minimum at the origin.

            Func<IList<double>, double> function = (IList<double> x) => 2.0 * MoreMath.Pow(x[0], 2) - 1.05 * MoreMath.Pow(x[0], 4) + MoreMath.Pow(x[0], 6) / 6.0 + x[0] * x[1] + MoreMath.Pow(x[1], 2);

            ColumnVector start = new ColumnVector(1.0, 1.0);

            MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(function, start);

            Console.WriteLine("{0} ({1}) ?= 0.0", minimum.Value, minimum.Precision);
            Console.WriteLine("{0} {1}", minimum.Location[0], minimum.Location[1]);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = 2.0 * minimum.Precision }));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Location, new ColumnVector(2), new EvaluationSettings { AbsolutePrecision = 2.0 * Math.Sqrt(minimum.Precision) }));
        }
        private static void BuildLinearSystem(double[] values, int[] breakIndices, int intervalsCount, out SquareMatrix leftHandMatrix, out ColumnVector rightHandVector)
        {
            // build linear system of equations to solve the approximation problem
            var systemSize = 7 * intervalsCount - 3; // matrix size
            leftHandMatrix = new SquareMatrix(systemSize);
            rightHandVector = new ColumnVector(systemSize);
            for (int intervalIndex = 0; intervalIndex < intervalsCount; ++intervalIndex)
            {
                var intervalStart = intervalIndex == 0 ? 0 : breakIndices[intervalIndex - 1];
                var intervalEnd = breakIndices[intervalIndex];
                var pointsCount = intervalEnd - intervalStart + 1;
                var baseMatrixIndex = 7 * intervalIndex;
                var ts = Enumerable.Range(intervalStart, pointsCount);

                // fill the 4x4 part of the matrix
                foreach (var row in Enumerable.Range(baseMatrixIndex, 4))
                {
                    foreach (var col in Enumerable.Range(baseMatrixIndex, 4))
                    {
                        var sum = ts.Select(t => Math.Pow(t, row + col - 2 * baseMatrixIndex)).Sum();
                        leftHandMatrix[row, col] = sum;
                    }
                    rightHandVector[row] = ts.Sum(t => values[t] * Math.Pow(t, row - baseMatrixIndex));
                }

                if (intervalIndex < intervalsCount - 1) // we add additional matrix elements for non-last intervals
                {
                    // fill the 5th row and column of the matrix
                    foreach (var i in Enumerable.Range(baseMatrixIndex + 1, 3))
                    {
                        var relativeIdx = i - baseMatrixIndex;
                        var value = relativeIdx * Math.Pow(ts.Last(), relativeIdx - 1);
                        leftHandMatrix[i, baseMatrixIndex + 4] = value;
                        leftHandMatrix[i + 7, baseMatrixIndex + 4] = -value;
                        leftHandMatrix[baseMatrixIndex + 4, i] = value;
                        leftHandMatrix[baseMatrixIndex + 4, i + 7] = -value;
                    }

                    // fill the 6th row and column of the matrix
                    foreach (var i in Enumerable.Range(baseMatrixIndex, 4))
                    {
                        var relativeIdx = i - baseMatrixIndex;
                        var value = Math.Pow(ts.Last(), relativeIdx);
                        leftHandMatrix[i, baseMatrixIndex + 5] = value;
                        leftHandMatrix[i + 7, baseMatrixIndex + 5] = -value;
                        leftHandMatrix[baseMatrixIndex + 5, i] = value;
                        leftHandMatrix[baseMatrixIndex + 5, i + 7] = -value;
                    }

                    {
                        // fill the 7th row and column of the matrix
                        var i = baseMatrixIndex + 2;
                        var value = 2;
                        leftHandMatrix[i, baseMatrixIndex + 6] = value;
                        leftHandMatrix[i + 7, baseMatrixIndex + 6] = -value;
                        leftHandMatrix[baseMatrixIndex + 6, i] = value;
                        leftHandMatrix[baseMatrixIndex + 6, i + 7] = -value;

                        i = baseMatrixIndex + 3;
                        value = 6 * ts.Last();
                        leftHandMatrix[i, baseMatrixIndex + 6] = value;
                        leftHandMatrix[i + 7, baseMatrixIndex + 6] = -value;
                        leftHandMatrix[baseMatrixIndex + 6, i] = value;
                        leftHandMatrix[baseMatrixIndex + 6, i + 7] = -value;
                    }
                }
            }
        }
        //Method that calculates the calibration parameters
        void calibrazione(double[] X_kinect, double[] Y_kinect, double[] Z_kinect)
        {
            //Grid coordinates
            double[] X_Ref_B = new double[12] { -517.5, -172.5, 172.5, 517.5, -517.5, -172.5, 172.5, 517.5, -517.5, -172.5, 172.5, 517.5 };// coordinate X dei punti della griglia di riferimento (origine posta al centro della griglia stessa)
            double[] Y_Ref_B = new double[12] { 345.0, 345.0, 345.0, 345.0, 0.0, 0.0, 0.0, 0.0, -345.0, -345.0, -345.0, -345.0 };// coordinate Y dei punti della griglia di riferimento (origine posta al centro della griglia stessa)
            double[] Z_Ref_B = new double[12];

            Sample XKINECT = new Sample(X_kinect);
            Sample YKINECT = new Sample(Y_kinect);
            Sample ZKINECT = new Sample(Z_kinect);

            // barycenter of Kinect coordinates
            double X_Bar = XKINECT.Mean;
            double Y_Bar = YKINECT.Mean;
            double Z_Bar = ZKINECT.Mean;

            //Kinect barycentric coordinates contaneirs
            double[] X_Kinect_Bar = new double[12];
            double[] Y_Kinect_Bar = new double[12];
            double[] Z_Kinect_Bar = new double[12];

            //Kinect barycentric coordinates 
            for (int i = 0; i < 12; i++)
            {
                X_Kinect_Bar[i] = X_kinect[i] - X_Bar;
                Y_Kinect_Bar[i] = Y_kinect[i] - Y_Bar;
                Z_Kinect_Bar[i] = Z_kinect[i] - Z_Bar;
            }

            //Modello rotazione + 2 parametri di scala Yoss=AX+b  oppure B=Yoss-b=AX  X=B*A^-1
           
            RectangularMatrix A = new RectangularMatrix(36, 5); 
            ColumnVector B = new ColumnVector(36);
            ColumnVector bb = new ColumnVector(36);
            ColumnVector Yoss = new ColumnVector(36);
            ColumnVector X = new ColumnVector(5);
            SquareMatrix X1 = new SquareMatrix(5);
            ColumnVector X2 = new ColumnVector(5);

            for (int i = 0; i < 12; i++)
            {
                
                Yoss[3 * i] = X_Ref_B[i];
                Yoss[3 * i + 1] = Y_Ref_B[i];
                Yoss[3 * i + 2] = Z_Ref_B[i];

                
                A[3 * i, 0] = Y_Kinect_Bar[i];
                A[3 * i, 1] = -Z_Kinect_Bar[i];
                A[3 * i, 2] = 0.0;
                A[3 * i, 3] = X_Kinect_Bar[i];
                A[3 * i, 4] = 0.0;

               
                A[3 * i + 1, 0] = -X_Kinect_Bar[i];
                A[3 * i + 1, 1] = 0.0;
                A[3 * i + 1, 2] = Z_Kinect_Bar[i];
                A[3 * i + 1, 3] = 0.0;
                A[3 * i + 1, 4] = Y_Kinect_Bar[i];

                
                A[3 * i + 2, 0] = 0.0;
                A[3 * i + 2, 1] = X_Kinect_Bar[i];
                A[3 * i + 2, 2] = -Y_Kinect_Bar[i];
                A[3 * i + 2, 3] = 0.0;
                A[3 * i + 2, 4] = 0.0;

               
                bb[3 * i] = X_Kinect_Bar[i];
                bb[3 * i + 1] = Y_Kinect_Bar[i];
                bb[3 * i + 2] = Z_Kinect_Bar[i];

                
                B[3 * i] = X_Ref_B[i] - X_Kinect_Bar[i];
                B[3 * i + 1] = Y_Ref_B[i] - Y_Kinect_Bar[i];
                B[3 * i + 2] = Z_Ref_B[i] - Z_Kinect_Bar[i];
            }

            X1 = (SquareMatrix)(A.Transpose() * A);
            X2 = (A.Transpose() * B); 
            X = (X1.Inverse()) * X2;

            a = X[0];
            b = X[1];
            c = X[2];
            lambdaX = X[3];
            lambdaY = X[4];
            this.sw9.Write("{0:#####.0000}      {1:#####.0000}      {2:#####.0000}      {3:#####.0000}      {4:#####.0000}      ", a, b, c, lambdaX, lambdaY);
            this.sw9.WriteLine();
        }
        public void Rosenbrock()
        {
            // This is a multi-dimensional generalization of the famous Rosenbrock, aka banana function,
            // which has a narrow parabolic valley whose floor slopes only gently to the minimum.

            Func<IList<double>, double> fRosenbrock = delegate(IList<double> x) {
                double s = 0.0;
                for (int i = 0; i < (x.Count - 1); i++) {
                    s += 100.0 * MoreMath.Pow(x[i + 1] - x[i] * x[i], 2) + MoreMath.Pow(1.0 - x[i], 2);
                }
                return (s);
            };

            for (int n = 2; n < 8; n++)
            {
                Console.WriteLine("n={0}", n);

                double[] start = new double[n];
                MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(fRosenbrock, start);

                Console.WriteLine(minimum.EvaluationCount);
                Console.WriteLine("{0} {1} ?= 0.0", minimum.Value, minimum.Precision);

                ColumnVector solution = new ColumnVector(n);
                for (int i = 0; i < solution.Dimension; i++) solution[i] = 1.0;

                Assert.IsTrue(minimum.Dimension == n);
                Assert.IsTrue(minimum.Precision > 0.0);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, 0.0, new EvaluationSettings() { AbsolutePrecision = 2.0 * minimum.Precision }));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Location, solution, new EvaluationSettings() { RelativePrecision = 2.0 * Math.Sqrt(minimum.Precision) }));

            }
        }
Example #17
0
        private ColumnVector Normalize(ColumnVector vector)
        {
            double normalizationValue = 0;
            for (int i = 0; i < vector.RowCount; i++)
            {
                normalizationValue += Math.Pow(vector[i], 2);
            }

            if (normalizationValue != 0)
            {
                ColumnVector normalizedVector = new ColumnVector(vector.RowCount);

                for (int i = 0; i < vector.RowCount; i++)
                {
                    normalizedVector[i] = vector[i] / Math.Sqrt(normalizationValue);
                }

                return normalizedVector;
            }
            else
            {
                return vector;
            }
        }
        public void Perm()
        {
            Func<IList<double>, double> fPerm = (IList<double> x) => {
                double s = 0.0;
                for (int i = 1; i <= x.Count; i++) {
                    double t = 0.0;
                    for (int j = 0; j < x.Count; j++) {
                        t += (j + 1) * (MoreMath.Pow(x[j], i) - 1.0 / MoreMath.Pow(j + 1, i));
                    }
                    s += MoreMath.Sqr(t);
                }
                return (s);
            };

            int n = 4;

            ColumnVector start = new ColumnVector(n);

            MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(fPerm, start);

            Console.WriteLine(minimum.EvaluationCount);
            Console.WriteLine(minimum.Value);
            for (int i = 0; i < minimum.Dimension; i++) Console.WriteLine(minimum.Location[i]);
        }
        // Method that calculates the calibration parameters
        public void Calibration(double[] X_Kinect, double[] Y_Kinect, double[] Z_Kinect)
        {
            double[] X_Ref_B = new double[dim];
            double[] Y_Ref_B = new double[dim];
            double[] Z_Ref_B = new double[dim];
            
                if (colonne_griglia_calibrazione % 2 == 0 && righe_griglia_calibrazione % 2 == 0)
                {
                    for (int i = 0; i < righe_griglia_calibrazione; i++)
                    {
                        for (int j = 0; j < colonne_griglia_calibrazione; j++)
                        {
                            X_Ref_B[colonne_griglia_calibrazione*i + j] = (-colonne_griglia_calibrazione/2 + j)*step + step/2;
                            Y_Ref_B[colonne_griglia_calibrazione*i + j] = (righe_griglia_calibrazione/2 - i)*step - step/2;
                        }
                    }
                }

                if (colonne_griglia_calibrazione % 2 == 0 && righe_griglia_calibrazione % 2 != 0) 
                {
                    for (int i = 0; i < righe_griglia_calibrazione; i++)
                    {
                        for (int j = 0; j < colonne_griglia_calibrazione; j++)
                        {
                            X_Ref_B[colonne_griglia_calibrazione * i + j] = (-colonne_griglia_calibrazione / 2 + j) * step + step / 2;
                            Y_Ref_B[colonne_griglia_calibrazione * i + j] = ((righe_griglia_calibrazione-1)/ 2 - i) * step; 
                        }
                    }
                }

                if (colonne_griglia_calibrazione % 2 != 0 && righe_griglia_calibrazione % 2 == 0) 
                { 
                    for (int i = 0; i < righe_griglia_calibrazione; i++)
                    {
                        for (int j = 0; j < colonne_griglia_calibrazione; j++)
                        {
                            X_Ref_B[colonne_griglia_calibrazione*i + j] = (-(colonne_griglia_calibrazione-1)/2 + j)*step;
                            Y_Ref_B[colonne_griglia_calibrazione*i + j] = (righe_griglia_calibrazione/2 - i)*step - step/2;
                        }
                    } 
                }

                if (colonne_griglia_calibrazione % 2 != 0 && righe_griglia_calibrazione % 2 != 0) 
                {
                    for (int i = 0; i < righe_griglia_calibrazione; i++)
                    {
                        for (int j = 0; j < colonne_griglia_calibrazione; j++)
                        {
                            X_Ref_B[colonne_griglia_calibrazione * i + j] = (-(colonne_griglia_calibrazione - 1) / 2 + j) * step;
                            Y_Ref_B[colonne_griglia_calibrazione * i + j] = ((righe_griglia_calibrazione - 1) / 2 - i) * step;
                        }
                    }
                }

            // Grid coordinates
            for (int k = 0; k < dim; k++)
            {
                this.Win.sw5.WriteLine("{0:#####.0000}      {1:#####.0000}      {2:#####.0000}      ", X_Ref_B[k], Y_Ref_B[k], Z_Ref_B[k]);
            }
            this.Win.sw5.WriteLine();

            Sample XKINECT = new Sample(X_Kinect);
            Sample YKINECT = new Sample(Y_Kinect);
            Sample ZKINECT = new Sample(Z_Kinect);

            // barycenter of Kinect coordinates
            double X_Bar = XKINECT.Mean;
            double Y_Bar = YKINECT.Mean;
            double Z_Bar = ZKINECT.Mean;

            //Kinect barycentric coordinates contaneirs
            double[] X_Kinect_Bar = new double[dim];
            double[] Y_Kinect_Bar = new double[dim];
            double[] Z_Kinect_Bar = new double[dim];

            //Kinect barycentric coordinates 
            for (int i = 0; i < dim; i++)
            {
                X_Kinect_Bar[i] = X_Kinect[i] - X_Bar;
                Y_Kinect_Bar[i] = Y_Kinect[i] - Y_Bar;
                Z_Kinect_Bar[i] = Z_Kinect[i] - Z_Bar;

                this.Win.sw3.WriteLine("{0:#####.0000}      {1:#####.0000}      {2:#####.0000}      ", X_Kinect_Bar[i],  Y_Kinect_Bar[i],  Z_Kinect_Bar[i]);
            }
            this.Win.sw3.WriteLine();

            //Modello rotazione + 2 parametri di scala Yoss = AX+b  oppure B = Yoss-bb = AX  X = B*A^-1

            RectangularMatrix A = new RectangularMatrix(dim * 3, 5);
            ColumnVector B = new ColumnVector(dim * 3);
            ColumnVector bb = new ColumnVector(dim * 3);
            ColumnVector Yoss = new ColumnVector(dim * 3);
            ColumnVector X = new ColumnVector(5);
            SquareMatrix X1 = new SquareMatrix(5);
            ColumnVector X2 = new ColumnVector(5);

            for (int i = 0; i < dim; i++)
            {
                
                Yoss[3 * i ] = X_Ref_B[i];
                Yoss[3 * i + 1] = Y_Ref_B[i];
                Yoss[3 * i + 2] = Z_Ref_B[i];

                A[3 * i, 0] = Y_Kinect_Bar[i];
                A[3 * i, 1] = -Z_Kinect_Bar[i];
                A[3 * i, 2] = 0.0;
                A[3 * i, 3] = X_Kinect_Bar[i];
                A[3 * i, 4] = 0.0;

                A[3 * i + 1, 0] = -X_Kinect_Bar[i];
                A[3 * i + 1, 1] = 0.0;
                A[3 * i + 1, 2] = Z_Kinect_Bar[i];
                A[3 * i + 1, 3] = 0.0;
                A[3 * i + 1, 4] = Y_Kinect_Bar[i];

                A[3 * i + 2, 0] = 0.0;
                A[3 * i + 2, 1] = X_Kinect_Bar[i];
                A[3 * i + 2, 2] = -Y_Kinect_Bar[i];
                A[3 * i + 2, 3] = 0.0;
                A[3 * i + 2, 4] = 0.0;

                bb[3 * i] = X_Kinect_Bar[i];
                bb[3 * i + 1] = Y_Kinect_Bar[i];
                bb[3 * i + 2] = Z_Kinect_Bar[i];

                B[3 * i] = X_Ref_B[i] - X_Kinect_Bar[i];
                B[3 * i + 1] = Y_Ref_B[i] - Y_Kinect_Bar[i];
                B[3 * i + 2] = Z_Ref_B[i] - Z_Kinect_Bar[i];
            }

                X1 = (SquareMatrix)(A.Transpose() * A);
                X2 = (A.Transpose() * B);
                X = (X1.Inverse()) * X2;

                a = X[0];
                b = X[1];
                c = X[2];
                lambdaX = X[3];
                lambdaY = X[4];
                this.Win.sw12.Write("{0:#####.0000}      {1:#####.0000}      {2:#####.0000}      {3:#####.0000}      {4:#####.0000}      ", a, b, c, lambdaX, lambdaY);
                this.Win.sw12.WriteLine();

                this.Win.textBlock8.Text = string.Format("Calibration parameters:\na = {0} \nb = {1} \nc = {2} \nlambdaX = {3} \nlambdaY = {4}", a, b, c, lambdaX, lambdaY);
             
            SquareMatrix ROT = new SquareMatrix(3);
            ROT[0, 0] = 1 + lambdaX;
            ROT[0, 1] = a;
            ROT[0, 2] = -b;
            ROT[1, 0] = -a;
            ROT[1, 1] = 1 + lambdaY;
            ROT[1, 2] = c;
            ROT[2, 0] = b;
            ROT[2, 1] = -c;
            ROT[2, 2] = 1;
            

           
        }
        public void GoldsteinPrice()
        {
            // Goldstein-Price has a valley with a complicated shape and a global minimum value of 3 at (0,-1).
            // It also has local minima, so we have to start close to this minimum if we expect to end at it.

            Func<IList<double>, double> fGoldsteinPrice = (IList<double> v) => {
                double x = v[0];
                double y = v[1];
                return (
                    (1 + MoreMath.Pow(x + y + 1, 2) * (19 - 14 * x + 3 * x * x - 14 * y + 6 * x * y + 6 * y * y)) *
                    (30 + MoreMath.Pow(2 * x - 3 * y, 2) * (18 - 32 * x + 12 * x * x + 48 * y - 36 * x * y + 27 * y * y))
                );
            };

            ColumnVector start = new ColumnVector(0.5, -0.5);
            MultiExtremum min = MultiFunctionMath.FindLocalMinimum(fGoldsteinPrice, start);

            Console.WriteLine(min.EvaluationCount);
            Console.WriteLine(min.Value);

            Assert.IsTrue(min.Dimension == 2);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Value, 3.0));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(min.Location, new ColumnVector(0.0, -1.0), Math.Sqrt(TestUtilities.TargetPrecision)));

            MultiExtremum min2 = MultiFunctionMath.FindGlobalMinimum(fGoldsteinPrice, new Interval[] { Interval.FromEndpoints(-2.0, 2.0), Interval.FromEndpoints(-2.0, 2.0) });

            Assert.IsTrue(min2.Dimension == 2);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(min2.Value, 3.0, new EvaluationSettings() { AbsolutePrecision = min2.Precision }));
            //Assert.IsTrue(TestUtilities.IsNearlyEqual(min2.Location, new ColumnVector(0.0, -1.0), Math.Sqrt(TestUtilities.TargetPrecision)));
        }
        public void EasomLocal()
        {
            Func<IList<double>, double> function = (IList<double> x) => Math.Cos(x[0]) * Math.Cos(x[1]) * Math.Exp(-(MoreMath.Sqr(x[0] - Math.PI) + MoreMath.Sqr(x[1] - Math.PI)));

            // We can't start too far from minimum, since cosines introduce many local minima.
            ColumnVector start = new ColumnVector(1.5, 2.0);

            MultiExtremum maximum = MultiFunctionMath.FindLocalMaximum(function, start);

            Console.WriteLine(maximum.Value);
            Assert.IsTrue(TestUtilities.IsNearlyEqual(maximum.Value, 1.0, new EvaluationSettings() { AbsolutePrecision = 2.0 * maximum.Precision }));
            Assert.IsTrue(TestUtilities.IsNearlyEqual(maximum.Location, new ColumnVector(Math.PI, Math.PI), new EvaluationSettings { AbsolutePrecision = 2.0 * Math.Sqrt(maximum.Precision) }));
        }
Example #22
0
        public void STA()
        {
            // Has local minimum when any coordinate is at one of two values, global when all coordinates at one of them.
            Func<IList<double>, double> fStyblinskiTang = (IList<double> x) => {
                double fst = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    double x1 = x[i];
                    double x2 = MoreMath.Sqr(x1);
                    fst += x2 * (x2 - 16.0) + 5.0 * x1;
                }
                return (fst / 2.0);
            };

            // Asymptotic "minima" at infinity, and (3,1/2)->0
            Func<IList<double>, double> fBeale = (IList<double> x) =>
                MoreMath.Sqr(1.5 - x[0] + x[0] * x[1]) +
                MoreMath.Sqr(2.25 - x[0] + x[0] * x[1] * x[1]) +
                MoreMath.Sqr(2.625 - x[0] + x[0] * x[1] * x[1] * x[1]);

            Func<IList<double>, double> fEggholder = (IList<double> x) => {
                double y47 = x[1] + 47.0;
                return(-y47 * Math.Sin(Math.Sqrt(Math.Abs(y47 + x[0] / 2.0))) - x[0] * Math.Sin(Math.Sqrt(Math.Abs(x[0] - y47))));
            };

            // Many local minima, global minimum at (0,0)->0
            Func<IList<double>, double> fAckley = (IList<double> x) => {
                double s = 0.0;
                double c = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s += x[i] * x[i];
                    c += Math.Cos(2.0 * Math.PI * x[i]);
                }
                return (-20.0 * Math.Exp(-0.2 * Math.Sqrt(s / x.Count)) - Math.Exp(c / x.Count) + 20.0 + Math.E);
            };

            // Burkin has a narrow valley, not aligned with any axis, punctuated with many tiny "wells" along its bottom.
            // The deepest well is at (-10,1)-> 0.
            Func<IList<double>, double> fBurkin = (IList<double> x) => 100.0 * Math.Sqrt(Math.Abs(x[1] - 0.01 * x[0] * x[0])) + 0.01 * Math.Abs(x[0] + 10.0);

            Func<IList<double>, double> threeHumpCamel = (IList<double> x) => {
                double x2 = x[0] * x[0];
                return (2.0 * x2 - 1.05 * x2 * x2 + x2 * x2 * x2 / 6.0 + (x[0] + x[1]) * x[1]);
            };

            // Easom has many lobal extra ripples and then a deep but narrow global minimum at (\pi, \pi) -> -1
            Func<IList<double>, double> fEasom = (IList<double> x) => -Math.Cos(x[0]) * Math.Cos(x[1]) * Math.Exp(-(MoreMath.Sqr(x[0] - Math.PI) + MoreMath.Sqr(x[1] - Math.PI)));

            // Test over [-500,500], minimum at (420.969,...) -> -418.983*d, many local minima
            Func<IList<double>, double> fSchwefel = (IList<double> x) => {
                double s = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s += x[i] * Math.Sin(Math.Sqrt(Math.Abs(x[i])));
                }
                return (-s);
            };

            Func<IList<double>, double> function = fSchwefel;

            int n = 4;

            ColumnVector start = new ColumnVector(n);
            //for (int i = 0; i < start.Dimension; i++) start[i] = 1.0;

            Interval[] box = new Interval[n];
            for (int i = 0; i < box.Length; i++) {
                box[i] = Interval.FromEndpoints(-500.0, 500.0);
            }
            //box[0] = Interval.FromEndpoints(-15.0, -5.0);
            //box[1] = Interval.FromEndpoints(-3.0, 3.0);

            MultiFunctionMath.FindGlobalMinimum(function, box);
            //MultiFunctionMath.FindExtremum_Amobea(fStyblinskiTang, start, new EvaluationSettings() { RelativePrecision = 1.0E-10, AbsolutePrecision = 1.0E-12, EvaluationBudget = 1000 });
        }
Example #23
0
        public double[] Predict(double[] sequence, int predictedAmount)
        {
            double[] predictedSequence = new double[predictedAmount];

            for (int i = 0; i < predictedAmount; i++)
            {

                double[] image = new double[windowSize];

                if (windowSize - i > 0)
                {
                    Array.Copy(sequence, sequence.Length - windowSize + i, image, 0, windowSize - i);
                    Array.Copy(predictedSequence, 0, image, windowSize - i, i);
                }
                else
                {
                    Array.Copy(predictedSequence, i - windowSize, image, 0, windowSize);
                }

                ColumnVector imageMatrix = new ColumnVector(image.Length);

                for (int j = 0; j < image.Length; j++)
                {
                    imageMatrix[j] = image[j];
                }

                ColumnVector X = ConcatVertically(imageMatrix, contextNeurons);

                ColumnVector Y1 = weightMatrix1 * X;
                double Y2 = weightMatrix2 * Y1;

                predictedSequence[i] = Y2;
            }

            return predictedSequence;
        }
        public void Schwefel()
        {
            // Test over [-500,500], minimum at (420.969,...) -> -418.983*d, many local minima

            Func<IList<double>, double> function = (IList<double> x) => {
                double s = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    s += x[i] * Math.Sin(Math.Sqrt(Math.Abs(x[i])));
                }
                return (-s);
            };

            for (int n = 2; n < 32; n = (int) Math.Round(AdvancedMath.GoldenRatio * n)) {
                Console.WriteLine("n={0}", n);

                Interval[] box = new Interval[n];
                for (int i = 0; i < box.Length; i++) box[i] = Interval.FromEndpoints(-500.0, 500.0);

                MultiExtremum minimum = MultiFunctionMath.FindGlobalMinimum(function, box);

                Assert.IsTrue(minimum.Dimension == n);

                Console.WriteLine(minimum.EvaluationCount);
                Console.WriteLine("{0} ({1}) ?= {2}", minimum.Value, minimum.Precision, -418.983 * n);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, -418.983 * n, new EvaluationSettings() { AbsolutePrecision = minimum.Precision }));

                foreach (double coordinate in minimum.Location) Console.WriteLine(coordinate);
                ColumnVector solution = new ColumnVector(n);
                solution.Fill((int i, int j) => 420.969);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Location, solution, new EvaluationSettings() { RelativePrecision = 2.0 * Math.Sqrt(Math.Abs(minimum.Precision / minimum.Value)) }));
            }
        }
Example #25
0
        private ColumnVector[] createLearningMatrix(double[] sequence)
        {
            ColumnVector[] learningMatrix = new ColumnVector[imagesNumber];
            for (int i = 0; i < imagesNumber; i++)
            {
                double[] data = new double[windowSize];
                Array.Copy(sequence, i, data, 0, windowSize);

                ColumnVector matrix = new ColumnVector(windowSize);
                for (int j = 0; j < windowSize; j++)
                {
                    matrix[j] = data[j];
                }
                learningMatrix[i] = matrix;
            }
            return learningMatrix;
        }
        public void SmoothedEasom()
        {
            // This function is mostly flat except very near (\pi, \pi).
            // For (1,1) or (0,0) "converges" to minimum of 0 at (1.30, 1.30). This is probably a local minimum of the cosine product.

            //Func<IList<double>, double> function = (IList<double> x) => -Math.Exp(-(MoreMath.Sqr(x[0] - Math.PI) + MoreMath.Sqr(x[1] - Math.PI)));
            Func<IList<double>, double> function = (IList<double> x) => -Math.Cos(x[0]) * Math.Cos(x[1]) * Math.Exp(-(MoreMath.Sqr(x[0] - Math.PI) + MoreMath.Sqr(x[1] - Math.PI)));
            ColumnVector start = new ColumnVector(2.0, 2.0);

            MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(function, start);
            Console.WriteLine(minimum.EvaluationCount);
            Console.WriteLine(minimum.Value);
            Console.WriteLine("{0} {1}", minimum.Location[0], minimum.Location[1]);
        }
        public void GaussianIntegrals()
        {
            Random rng = new Random(1);
            for (int d = 2; d < 4; d++) {
                if (d == 4 || d == 5 || d == 6) continue;
                Console.WriteLine(d);

                // Create a symmetric matrix
                SymmetricMatrix A = new SymmetricMatrix(d);
                for (int r = 0; r < d; r++) {
                    for (int c = 0; c < r; c++) {
                        A[r, c] = rng.NextDouble();
                    }
                    // Ensure it is positive definite by diagonal dominance
                    A[r, r] = r + 1.0;
                }

                // Compute its determinant, which appears in the analytic value of the integral
                CholeskyDecomposition CD = A.CholeskyDecomposition();
                double detA = CD.Determinant();

                // Compute the integral
                Func<IList<double>, double> f = (IList<double> x) => {
                    ColumnVector v = new ColumnVector(x);
                    double s = v.Transpose() * (A * v);
                    return (Math.Exp(-s));
                };

                Interval[] volume = new Interval[d];
                for (int i = 0; i < d; i++) volume[i] = Interval.FromEndpoints(Double.NegativeInfinity, Double.PositiveInfinity);

                IntegrationResult I = MultiFunctionMath.Integrate(f, volume);

                // Compare to the analytic result
                Console.WriteLine("{0} ({1}) {2}", I.Value, I.Precision, Math.Sqrt(MoreMath.Pow(Math.PI, d) / detA));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(I.Value, Math.Sqrt(MoreMath.Pow(Math.PI, d) / detA), new EvaluationSettings() { AbsolutePrecision = 2.0 * I.Precision }));
            }
        }
        public void StylblinskiTang()
        {
            Func<IList<double>, double> fStyblinskiTang = (IList<double> x) => {
                double fst = 0.0;
                for (int i = 0; i < x.Count; i++) {
                    double x1 = x[i];
                    double x2 = MoreMath.Sqr(x1);
                    fst += x2 * (x2 - 16.0) + 5.0 * x1;
                }
                return (fst / 2.0);
            };

            // solution coordinate is root of 5 - 32 x + 4 x^3 = 0 with negative second derivative.
            // There are two such roots.
            double root1 = -2.9035340277711770951;
            double root2 = 2.7468027709908369925;

            // tested up to n=16, works with slightly decreasing accuracy of Location
            for (int n = 2; n < 8; n++) {

                Console.WriteLine(n);

                ColumnVector start = new ColumnVector(n);
                //ColumnVector start = new ColumnVector(-1.0, -2.0, -3.0, -4.0, -5.0, -6.0);

                MultiExtremum minimum = MultiFunctionMath.FindLocalMinimum(fStyblinskiTang, start);

                Console.WriteLine(minimum.EvaluationCount);
                Console.WriteLine(minimum.Value);
                for (int i = 0; i < minimum.Dimension; i++) {
                    Console.WriteLine(minimum.Location[i]);
                    Assert.IsTrue(
                        TestUtilities.IsNearlyEqual(minimum.Location[i], root1, Math.Sqrt(Math.Sqrt(TestUtilities.TargetPrecision))) ||
                        TestUtilities.IsNearlyEqual(minimum.Location[i], root2, Math.Sqrt(Math.Sqrt(TestUtilities.TargetPrecision)))
                    );
                }
                Assert.IsTrue(TestUtilities.IsNearlyEqual(minimum.Value, fStyblinskiTang(minimum.Location)));

            }
        }
Example #29
0
        public void Learn(BackgroundWorker backgroundWorker, DoWorkEventArgs e, double[] sequence, bool? showIteration)
        {
            ColumnVector[] learningMatrix = createLearningMatrix(sequence);
            double[] etalons = createEtalons(sequence);

            backgroundResult = new BackgroundResult();
            backgroundResult.IsComplete = false;

            double totalError;
            int iterations = 0;

            do
            {
                // learn
                for (int i = 0; i < learningMatrix.Length; i++)
                {

                    ColumnVector X = ConcatVertically(learningMatrix[i], contextNeurons);

                    ColumnVector Xn = Normalize(X);
                    double norm = X.FrobeniusNorm();

                    ColumnVector Y1 = weightMatrix1 * Xn;
                    double Y2 = weightMatrix2 * Y1;

                    double gamma2 = (Y2 * norm) - etalons[i];
                    RowVector gamma1 = gamma2 * weightMatrix2;

                    RowVector a = learningCoefficient * gamma1;
                    RectangularMatrix b = Xn * a;

                    weightMatrix1 = weightMatrix1 - b.Transpose();
                    weightMatrix2 = weightMatrix2 - ((gamma2 * learningCoefficient) * Y1).Transpose();

                    contextNeurons = Y1;
                }

                totalError = 0;

                // calculate total error
                for (int i = 0; i < learningMatrix.Length; i++)
                {

                    ColumnVector X = ConcatVertically(learningMatrix[i], contextNeurons);

                    ColumnVector Xn = Normalize(X);
                    double norm = X.FrobeniusNorm();

                    ColumnVector Y1 = weightMatrix1 * Xn;
                    double Y2 = weightMatrix2 * Y1;

                    double gamma2 = Y2 * norm - etalons[i];

                    totalError += Math.Pow(gamma2, 2);
                }

                backgroundResult.IterationNumber = iterations;
                backgroundResult.Error = totalError;
                backgroundResult.IsComplete = false;

                if (showIteration.Equals(true))
                {
                    backgroundWorker.ReportProgress(0, backgroundResult);

                    Thread.Sleep(200);

                    if (backgroundWorker.CancellationPending)
                    {
                        e.Cancel = true;
                        break;
                    }
                }

                iterations++;
            }
            while (totalError >= maxError && iterations <= maxIterations);

            backgroundResult.IterationNumber = iterations;
            backgroundResult.Error = totalError;
            backgroundResult.IsComplete = true;

            backgroundWorker.ReportProgress(0, backgroundResult);
        }
        public void RectangularMatrixAccess()
        {
            // create a matrix via outer product
            ColumnVector cv = new ColumnVector(new double[] { 1, 2 });
            RowVector rv = new RowVector(new double[] { 3, 4, 5 });
            RectangularMatrix M = cv * rv;

            // check dimensions
            Assert.IsTrue(M.RowCount == cv.Dimension);
            Assert.IsTrue(M.ColumnCount == rv.Dimension);

            // check values
            for (int r = 0; r < M.RowCount; r++) {
                for (int c = 0; c < M.ColumnCount; c++) {
                    Assert.IsTrue(M[r, c] == cv[r] * rv[c]);
                }
            }

            // extract a column
            ColumnVector mc = M.Column(1);
            Assert.IsTrue(mc.Dimension == M.RowCount);
            for (int i = 0; i < mc.Dimension; i++) {
                Assert.IsTrue(mc[i] == M[i, 1]);
            }

            // extract a row
            RowVector mr = M.Row(1);
            Assert.IsTrue(mr.Dimension == M.ColumnCount);
            for (int i = 0; i < mr.Dimension; i++) {
                Assert.IsTrue(mr[i] == M[1, i]);
            }

            // test clone
            RectangularMatrix MC = M.Copy();
            Assert.IsTrue(MC.RowCount == M.RowCount);
            Assert.IsTrue(MC.ColumnCount == M.ColumnCount);

            // test equality of clone
            Assert.IsTrue(MC == M);
            Assert.IsFalse(MC != M);

            // test independence of clone
            MC[0, 0] += 1.0;
            Assert.IsFalse(MC == M);
            Assert.IsTrue(MC != M);
        }