Example #1
0
        /* Propagate the accuracy of the voltage measurements*/
        public MathNetNumLin.Matrix <Complex> KVPropagation(List <int> inaccurate_line_set, int Accurate_line_num, int to_bus_number_int, Complex KV_accurate)
        {
            // Colloect accurate line V data
            GetLineVI(Accurate_line_num.ToString(), to_bus_number_int);
            Complex     initial         = 0;
            DenseMatrix accurate_line_V = DenseMatrix.Create(m_V1.Count(), 1, initial);

            //Matrix<Complex> accurate_line_V = null;
            for (int idx2 = 0; idx2 < m_V1.Count(); idx2++)
            {
                accurate_line_V[idx2, 0] = m_V1[idx2] * KV_accurate;
            }

            // Colloect inaccurate lines V data
            int inaccurate_line_num = 0;

            for (int idx7 = 0; idx7 < inaccurate_line_set.Count(); idx7++)
            {
                if (inaccurate_line_set[idx7] == 0)
                {
                    inaccurate_line_num = idx7;
                    break;
                }
            }

            DenseMatrix inaccurate_line_V = DenseMatrix.Create(m_V1.Count(), inaccurate_line_num, initial);

            //Matrix<Complex> inaccurate_line_V = null;
            for (int idx3 = 0; idx3 < inaccurate_line_num; idx3++)
            {
                GetLineVI(inaccurate_line_set[idx3].ToString(), to_bus_number_int);
                for (int idx4 = 0; idx4 < m_V1.Count(); idx4++)
                {
                    inaccurate_line_V[idx4, idx3] = m_V1[idx4];
                }
            }

            // Propagate voltage accuracy
            MathNetNumLin.Matrix <Complex> KV_injection_set = MathNetNumLin.Matrix <Complex> .Build.Random(inaccurate_line_num, 1);

            for (int idx5 = 0; idx5 < inaccurate_line_num; idx5++)
            {
                Complex[] temp_KV     = new Complex[inaccurate_line_V.RowCount];
                Complex   temp_KV_sum = 0;
                for (int idx6 = 0; idx6 < inaccurate_line_V.RowCount; idx6++)
                {
                    temp_KV[idx6] = accurate_line_V[idx6, 0] / inaccurate_line_V[idx6, idx5];
                    temp_KV_sum   = temp_KV_sum + temp_KV[idx6];
                }
                KV_injection_set[idx5, 0] = temp_KV_sum / inaccurate_line_V.RowCount;
            }
            return(KV_injection_set);
        }
Example #2
0
        public MathNetNumLin.Matrix <Complex> LeastSquareEstimation(MathNetNumLin.Matrix <Complex> Y, MathNetNumLin.Matrix <Complex> X)
        {
            MathNetNumLin.Matrix <Complex> Beta;

            MathNetNumLin.Matrix <Complex> A = X.ConjugateTranspose() * X;
            MathNetNumLin.Matrix <Complex> B = A.Inverse();

            Beta = (X.ConjugateTranspose() * X).Inverse() * X.ConjugateTranspose() * Y; // For complex LSE problems, note that there should be conjugate transpose

            MathNetNumLin.Matrix <Complex> Error;
            Error = Y - X.Multiply(Beta);

            return(Beta);
        }
Example #3
0
        /* Propagate the accuracy of the current measurements*/
        public MathNetNumLin.Matrix <Complex> KIPropagation(List <int> inaccurate_line_set, int Accurate_line_num, int to_bus_number_int, Complex KI_accurate)
        {
            // Collect accurate line I data
            GetLineVI(Accurate_line_num.ToString(), to_bus_number_int);
            Complex     initial         = 0;
            DenseMatrix accurate_line_I = DenseMatrix.Create(m_I1.Count(), 1, initial);

            for (int idx2 = 0; idx2 < m_I1.Count(); idx2++)
            {
                accurate_line_I[idx2, 0] = m_I1[idx2] * KI_accurate;
            }

            // Collect inaccurate lines I data
            int inaccurate_line_num = 0;

            for (int idx7 = 0; idx7 < m_I1.Count(); idx7++)
            {
                if (inaccurate_line_set[idx7] == 0)
                {
                    inaccurate_line_num = idx7;
                    break;
                }
            }
            DenseMatrix inaccurate_line_I = DenseMatrix.Create(m_I1.Count(), inaccurate_line_num, initial);

            for (int idx3 = 0; idx3 < inaccurate_line_num; idx3++)
            {
                GetLineVI(inaccurate_line_set[idx3].ToString(), to_bus_number_int);
                for (int idx4 = 0; idx4 < m_V1.Count(); idx4++)
                {
                    inaccurate_line_I[idx4, idx3] = m_I1[idx4];
                }
            }

            // Propagate current accuracy
            MathNetNumLin.Matrix <Complex> KI_injection_set = MathNetNumLin.Matrix <Complex> .Build.Random(inaccurate_line_num, 1);

            MathNetNumLin.Matrix <Complex> accurate_line_I_matrix   = accurate_line_I;
            MathNetNumLin.Matrix <Complex> inaccurate_line_I_matrix = inaccurate_line_I;

            MathNetNumLin.Matrix <Complex> I_right_side = accurate_line_I_matrix * (-1);
            MathNetNumLin.Matrix <Complex> I_left_side  = inaccurate_line_I_matrix;

            KI_injection_set = LeastSquareEstimationInequalityConstrained(I_right_side, I_left_side);

            return(KI_injection_set);
        }
        public LeastSquaresSolver(int Row_number, int Column_number)
        {
            m_A = MathNetNumLin.Matrix <double> .Build.Dense(Row_number, Column_number);

            m_xInitial = MathNetNumLin.Vector <double> .Build.Dense(Column_number, 1);

            m_xLowerBound = MathNetNumLin.Vector <double> .Build.Dense(Column_number, 1);

            m_xUpperBound = MathNetNumLin.Vector <double> .Build.Dense(Column_number, 1);

            m_b = MathNetNumLin.Vector <double> .Build.Dense(Row_number, 1);

            m_results = MathNetNumLin.Vector <double> .Build.Dense(Column_number, 1);

            RowNumber    = m_A.RowCount;
            ColumnNumber = m_A.ColumnCount;
        }
Example #5
0
        /* Conduct PI section Impedance calibration of single line*/
        public int SingleLineImpedanceEstimation(string LineID, int FromBusNumber, Complex KV1, Complex KI1, TextBox textBoxMessages) //ALso need Complex KV1, Complex[,] Z
        {
            int CurrentToBus = 0;

            CurrentToBus = GetLineVI(LineID, FromBusNumber);

            //if (LineID == "2")
            //{ int a = 1; }

            Complex KV2 = new Complex();
            Complex KI2 = new Complex();
            Complex Z   = new Complex();
            Complex y   = new Complex();

            //Find the sample sets 30 samples per second, 60 seconds in all => 30 sets of samples, 60 samples per set, rule out -9999
            int i             = 0; //set number
            int feasible_flag = 0; //estimation feasible indicator, shows missing data quantity, if too large then the estimation is not feasible

            Complex[] Zhat11 = new Complex[30];
            Complex[] Zhat12 = new Complex[30];
            Complex[] Zhat21 = new Complex[30];
            Complex[] Zhat22 = new Complex[30];

            int SecondsNumber = (int)Math.Floor((double)(m_V1.Count() / 30));

            while (i < 30)
            {
                //get samples
                Complex[,] V_sample_temp = new Complex[SecondsNumber, 2];
                Complex[,] I_sample_temp = new Complex[SecondsNumber, 2];

                int current_row = 0;

                for (int j = 0; j < SecondsNumber; j++)
                {
                    current_row = j * 30 + i;
                    if ((m_V1[current_row] != -9999) && (m_I1[current_row] != -9999) && (m_V2[current_row] != -9999) && (m_I2[current_row] != -9999))
                    {
                        V_sample_temp[j, 0] = m_V1[current_row];
                        I_sample_temp[j, 0] = m_I1[current_row];
                        V_sample_temp[j, 1] = m_V2[current_row];
                        I_sample_temp[j, 1] = m_I2[current_row];
                    }
                    else
                    {
                        V_sample_temp[j, 0] = -9999;
                        I_sample_temp[j, 0] = -9999;
                        V_sample_temp[j, 1] = -9999;
                        I_sample_temp[j, 1] = -9999;
                    }
                }

                //transfer into matrix mode
                Complex     initial = 0;
                DenseMatrix Vhat    = DenseMatrix.Create(2, 1, initial);
                DenseMatrix Ihat    = DenseMatrix.Create(2, 1, initial);

                for (int k = 0; k < SecondsNumber; k++)
                {
                    if ((V_sample_temp[k, 0] != -9999) && (V_sample_temp[k, 0] != null))
                    {
                        Complex[,] V_temp_array = new Complex[2, 1];
                        V_temp_array[0, 0]      = V_sample_temp[k, 0];
                        V_temp_array[1, 0]      = V_sample_temp[k, 1];
                        DenseMatrix V_temp = DenseMatrix.OfArray(V_temp_array);

                        if ((Vhat != null) && (V_temp != null))
                        {
                            if (Vhat[0, 0] == 0)
                            {
                                Vhat = V_temp;
                            }
                            else
                            {
                                Vhat = MatrixCalculationExtensions.HorizontallyConcatenate(Vhat, V_temp);
                            }
                        }


                        Complex[,] I_temp_array = new Complex[2, 1];
                        I_temp_array[0, 0]      = I_sample_temp[k, 0];
                        I_temp_array[1, 0]      = I_sample_temp[k, 1];
                        DenseMatrix I_temp = DenseMatrix.OfArray(I_temp_array);

                        if ((Ihat != null) && (I_temp != null))
                        {
                            if (Ihat[0, 0] == 0)
                            {
                                Ihat = I_temp;
                            }
                            else
                            {
                                Ihat = MatrixCalculationExtensions.HorizontallyConcatenate(Ihat, I_temp);
                            }
                        }
                    }
                }

                //check sample quantity, enough to do estimation or not
                if (Vhat.ColumnCount < 20)
                {
                    feasible_flag += 1;
                    i             += 1;
                    continue;
                }
                else
                {
                    MathNetNumLin.Matrix <Complex> Vhat_T = Vhat.Transpose();
                    MathNetNumLin.Matrix <Complex> Ihat_T = Ihat.Transpose();

                    //estimate Zhat
                    MathNetNumLin.Matrix <Complex> Zhat_temp = null;

                    Zhat_temp = LeastSquareEstimation(Vhat_T, Ihat_T);// Ihat_T.Transpose().Multiply(Ihat_T).Inverse().Multiply(Ihat_T.Transpose()).Multiply(Vhat_T);
                    Zhat11[i] = Zhat_temp[0, 0];
                    Zhat12[i] = Zhat_temp[0, 1];
                    Zhat21[i] = Zhat_temp[1, 0];
                    Zhat22[i] = Zhat_temp[1, 1];

                    //Zhat12[i] = Zhat_temp[1, 0];
                    //Zhat21[i] = Zhat_temp[0, 1];
                }

                i += 1;
            }

            // Take average of Zhat to eliminate PMU error, if there is enough estimation results
            Complex from_bus_number     = FromBusNumber;
            Complex to_bus_number       = CurrentToBus;
            int     from_bus_number_int = FromBusNumber;
            int     to_bus_number_int   = CurrentToBus;

            double BaseZ = m_currentSystem.Network.BaseKV * m_currentSystem.Network.BaseKV / m_currentSystem.Network.BaseMVA;

            if (feasible_flag < 15)
            {
                Complex   W            = new Complex();
                Complex[] KV2_hat      = new Complex[30];
                Complex[] KI2_hat      = new Complex[30];
                Complex[] Z_hat_pu     = new Complex[30];
                Complex[] y_hat_pu     = new Complex[30];
                Complex   KV2_hat_sum  = new Complex();
                Complex   KI2_hat_sum  = new Complex();
                Complex   Z_hat_pu_sum = new Complex();
                Complex   y_hat_pu_sum = new Complex();

                for (int l = 0; l < 30; l++)
                {
                    if ((Zhat11[l] != null) || (Zhat12[l] != null) || (Zhat21[l] != null) || (Zhat22[l] != null))
                    {
                        Complex Zhat11_temp = Zhat11[l];
                        Complex Zhat12_temp = Zhat12[l];
                        Complex Zhat21_temp = Zhat21[l];
                        Complex Zhat22_temp = Zhat22[l];

                        W = (Zhat11_temp * Zhat22_temp) / (Zhat12_temp * Zhat21_temp);
                        W = Complex.Sqrt(W);
                        if (W.Imaginary < 0)
                        {
                            W = -1 * W;
                        }

                        KV2_hat[l] = 1 / W * Zhat11_temp / Zhat12_temp * KV1;
                        KI2_hat[l] = W * Zhat21_temp / Zhat11_temp * KI1;

                        if (KV2_hat[l].Real < 0)
                        {
                            KV2_hat[l] = KV2_hat[l] * (-1);
                        }
                        if (KI2_hat[l].Real < 0)
                        {
                            KI2_hat[l] = KI2_hat[l] * (-1);
                        }
                        y_hat_pu[l] = BaseZ * Complex.Sqrt((KI2_hat[l] * (W - 1)) / (KV2_hat[l] * (W + 1) * (Zhat11_temp * Zhat22_temp - Zhat12_temp * Zhat21_temp)) * KI1 / KV1);
                        //y_hat_pu[l] = Complex.Sqrt((KI2_hat[l] * (W - 1)) / (KV2_hat[l] * (W + 1) * (Zhat11_temp * Zhat22_temp - Zhat12_temp * Zhat21_temp)) * KI1 / KV1);

                        if (y_hat_pu[l].Imaginary < 0)
                        {
                            y_hat_pu[l] = Complex.Conjugate(y_hat_pu[l]);
                        }

                        Z_hat_pu[l] = (W - 1) / y_hat_pu[l];

                        if (Z_hat_pu[l].Real < 0)
                        {
                            Z_hat_pu[l] = Complex.Conjugate(-1 * Z_hat_pu[l]);
                        }

                        if (Z_hat_pu[l].Imaginary < 0)
                        {
                            Z_hat_pu[l] = Complex.Conjugate(Z_hat_pu[l]);
                        }
                    }

                    KV2_hat_sum  = KV2_hat_sum + KV2_hat[l];
                    KI2_hat_sum  = KI2_hat_sum + KI2_hat[l];
                    Z_hat_pu_sum = Z_hat_pu_sum + Z_hat_pu[l];
                    y_hat_pu_sum = y_hat_pu_sum + y_hat_pu[l];
                }

                KV2 = KV2_hat_sum / (30 - feasible_flag);
                KI2 = KI2_hat_sum / (30 - feasible_flag);
                Z   = Z_hat_pu_sum / (30 - feasible_flag); // * BaseZ;
                y   = y_hat_pu_sum / (30 - feasible_flag); // / BaseZ;

                //adding the computation results to K matrix and record KVs for both from_bus and to_bus for future calibrations
                int m = 0;
                while (m_K[m, 0] != 0)
                {
                    m += 1;
                }

                int Line_ID_int = Convert.ToInt32(LineID);
                m_K[m, 0] = Line_ID_int;
                m_K[m, 1] = from_bus_number;
                m_K[m, 2] = KV1;
                m_K[m, 3] = KI1;
                m_K[m, 4] = to_bus_number;
                m_K[m, 5] = KV2;
                m_K[m, 6] = KI2;
                m_K[m, 7] = Z;
                m_K[m, 8] = y.Imaginary;

                //update the propagation references
                int[]      injections_set      = FindInjections(to_bus_number_int);
                List <int> inaccurate_line_set = new List <int>(); //List to save all inaccurate lines
                for (int idx1 = 0; idx1 < injections_set.Count(); idx1++)
                {
                    if (injections_set[idx1] != Line_ID_int)
                    {
                        inaccurate_line_set.Add(injections_set[idx1]);
                    }
                }
                //Accurate Voltage Propagation
                MathNetNumLin.Matrix <Complex> KV_injections_set = KVPropagation(inaccurate_line_set, Line_ID_int, to_bus_number_int, KV2);
                //Accurate Current Propagation
                MathNetNumLin.Matrix <Complex> KI_injections_set = KIPropagation(inaccurate_line_set, Line_ID_int, to_bus_number_int, KI2);

                int pointer = 0;
                for (int idx1 = 0; idx1 < m_currentSystem.Network.LineNum; idx1++)
                {
                    if (m_KVKILines[idx1].Line_ID == 0)
                    {
                        pointer = idx1;
                        break;
                    }
                }
                for (int idx2 = 0; idx2 < KV_injections_set.RowCount; idx2++)
                {
                    if ((pointer + idx2) < m_currentSystem.Network.LineNum)
                    {
                        m_KVKILines[pointer + idx2].Line_ID      = inaccurate_line_set[idx2];
                        m_KVKILines[pointer + idx2].From_bus_num = to_bus_number_int;
                        m_KVKILines[pointer + idx2].KV1          = KV_injections_set[idx2, 0];
                        m_KVKILines[pointer + idx2].KI1          = KI_injections_set[idx2, 0];
                    }
                }

                //Set visited line to be 1
                for (int n = 0; n < m_currentSystem.Network.LineNum; n++)
                {
                    if (Line_ID_int == m_lineVisited[n, 0])
                    {
                        m_lineVisited[n, 1] = 1;
                        break;
                    }
                }

                string msg0 = "### Line " + LineID.ToString() + " from bus " +
                              m_currentSystem.Network.BusOriginalLibrary[from_bus_number_int - 1].ToString() + " to bus " +
                              m_currentSystem.Network.BusOriginalLibrary[to_bus_number_int - 1].ToString() + " has been estimated.\n";
                textBoxMessages.AppendLine(msg0);
            }
            else
            {
                string msg1 = "!!! Line " + LineID.ToString() + " from bus " +
                              m_currentSystem.Network.BusOriginalLibrary[from_bus_number_int - 1].ToString() + " to bus " +
                              m_currentSystem.Network.BusOriginalLibrary[to_bus_number_int - 1].ToString() + " can NOT be calibrated due to limited data.\n";
                textBoxMessages.AppendLine(msg1);
            }

            return(0);
        }
Example #6
0
        public MathNetNumLin.Matrix <Complex> LeastSquareEstimationInequalityConstrained(MathNetNumLin.Matrix <Complex> b, MathNetNumLin.Matrix <Complex> A)
        {
            int Row_number    = A.RowCount;
            int Column_number = A.ColumnCount;

            MathNetNumLin.Matrix <double> A_realpart = MathNetNumLin.Matrix <double> .Build.Dense(Row_number, Column_number);

            MathNetNumLin.Matrix <double> A_imagpart = MathNetNumLin.Matrix <double> .Build.Dense(Row_number, Column_number);

            MathNetNumLin.Vector <double> b_realpart = MathNetNumLin.Vector <double> .Build.Dense(Row_number);

            MathNetNumLin.Vector <double> b_imagpart = MathNetNumLin.Vector <double> .Build.Dense(Row_number);

            for (int idx0 = 0; idx0 < Row_number; idx0++)
            {
                for (int idx1 = 0; idx1 < Column_number; idx1++)
                {
                    A_realpart[idx0, idx1] = A[idx0, idx1].Real;
                    A_imagpart[idx0, idx1] = A[idx0, idx1].Imaginary;
                }
                b_realpart[idx0] = b[idx0, 0].Real;
                b_imagpart[idx0] = b[idx0, 0].Imaginary;
            }

            MathNetNumLin.Vector <double> xInitial_realpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            MathNetNumLin.Vector <double> xInitial_imagpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            MathNetNumLin.Vector <double> xLowerBound_realpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            MathNetNumLin.Vector <double> xLowerBound_imagpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            MathNetNumLin.Vector <double> xUpperBound_realpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            MathNetNumLin.Vector <double> xUpperBound_imagpart = MathNetNumLin.Vector <double> .Build.Dense(Column_number);

            for (int idx2 = 0; idx2 < Column_number; idx2++)
            {
                xInitial_realpart[idx2] = 1;
                xInitial_imagpart[idx2] = 0;

                xLowerBound_realpart[idx2] = 0.9452;
                xLowerBound_imagpart[idx2] = -0.1005;

                xUpperBound_realpart[idx2] = 1.0526;
                xUpperBound_imagpart[idx2] = 0.1005;
            }

            MathNetNumLin.Matrix <Complex> Beta = MathNetNumLin.Matrix <Complex> .Build.Random(Column_number, 1);

            MathNetNumLin.Vector <double> RealBeta = MathNetNumLin.Vector <double> .Build.Random(Column_number);

            LeastSquaresSolver RealPartSolver = new LeastSquaresSolver(Row_number, Column_number);

            RealPartSolver.A           = A_realpart;
            RealPartSolver.b           = b_realpart;
            RealPartSolver.xInitial    = xInitial_realpart;
            RealPartSolver.xLowerBound = xLowerBound_realpart;
            RealPartSolver.xUpperBound = xUpperBound_realpart;
            RealPartSolver.LeastSqauresInequalityConstrainedEstimation();

            for (int idx3 = 0; idx3 < RealPartSolver.Results.Count; idx3++)
            {
                RealBeta[idx3] = RealPartSolver.Results[idx3];
            }

            LeastSquaresSolver ImagPartSolver = new LeastSquaresSolver(Row_number, Column_number);

            ImagPartSolver.A           = A_imagpart;
            ImagPartSolver.b           = b_imagpart;
            ImagPartSolver.xInitial    = xInitial_imagpart;
            ImagPartSolver.xLowerBound = xLowerBound_imagpart;
            ImagPartSolver.xUpperBound = xUpperBound_imagpart;
            ImagPartSolver.LeastSqauresInequalityConstrainedEstimation();

            for (int idx4 = 0; idx4 < RealPartSolver.Results.Count; idx4++)
            {
                Beta[idx4, 0] = new Complex(RealBeta[idx4], ImagPartSolver.Results[idx4]);
            }

            return(Beta);
        }