Example #1
0
 public void CanSample()
 {
     var n = new Chi(1.0);
     n.Sample();
 }
Example #2
0
 public void CanSampleSequence()
 {
     var n = new Chi(1.0);
     var ied = n.Samples();
     GC.KeepAlive(ied.Take(5).ToArray());
 }
Example #3
0
 public void ValidateMaximum()
 {
     var n = new Chi(1.0);
     Assert.AreEqual(Double.PositiveInfinity, n.Maximum);
 }
Example #4
0
 public void ValidateDensityLn(double dof, double x, double expected)
 {
     var chi = new Chi(dof);
     Assert.That(chi.DensityLn(x), Is.EqualTo(expected).Within(13));
     Assert.That(Chi.PDFLn(dof, x), Is.EqualTo(expected).Within(13));
 }
Example #5
0
 public void SetDofFailsWithNonPositiveDoF(double dof)
 {
     var n = new Chi(1.0);
     Assert.Throws<ArgumentOutOfRangeException>(() => n.DegreesOfFreedom = dof);
 }
Example #6
0
 public void ValidateMinimum()
 {
     var n = new Chi(1.0);
     Assert.AreEqual(0.0, n.Minimum);
 }
Example #7
0
 public void ValidateStdDev(double dof)
 {
     var n = new Chi(dof);
     Assert.AreEqual(Math.Sqrt(n.Variance), n.StdDev);
 }
Example #8
0
 public void ValidateToString()
 {
     var n = new Chi(1.0);
     Assert.AreEqual("Chi(k = 1)", n.ToString());
 }
Example #9
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Chi_distribution">Chi distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Chi distribution class with parameter dof = 1.
            var chi = new Chi(1);
            Console.WriteLine(@"1. Initialize the new instance of the Chi distribution class with parameter DegreesOfFreedom = {0}", chi.DegreesOfFreedom);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", chi);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", chi.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", chi.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", chi.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", chi.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", chi.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", chi.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", chi.Mean.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", chi.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", chi.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", chi.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", chi.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples of the Chi distribution
            Console.WriteLine(@"3. Generate 10 samples of the Chi distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(chi.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Chi(1) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Chi(1) distribution and display histogram");
            var data = new double[100000];
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Chi(2) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Chi(2) distribution and display histogram");
            chi.DegreesOfFreedom = 2;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 6. Generate 100000 samples of the Chi(5) distribution and display histogram
            Console.WriteLine(@"6. Generate 100000 samples of the Chi(5) distribution and display histogram");
            chi.DegreesOfFreedom = 5;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
Example #10
0
 public void ValidateVariance(double dof)
 {
     var n = new Chi(dof);
     Assert.AreEqual(dof - (n.Mean * n.Mean), n.Variance);
 }
Example #11
0
 public void ValidateCumulativeDistribution(double dof, double x)
 {
     var n = new Chi(dof);
     double expected = SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0);
     Assert.AreEqual(expected, n.CumulativeDistribution(x));
     Assert.AreEqual(expected, Chi.CDF(dof, x));
 }
Example #12
0
 public void ValidateDensityLn(double dof, double x)
 {
     var n = new Chi(dof);
     double expected = ((1.0 - (dof / 2.0)) * Math.Log(2.0)) + ((dof - 1.0) * Math.Log(x)) - (x * (x / 2.0)) - SpecialFunctions.GammaLn(dof / 2.0);
     Assert.AreEqual(expected, n.DensityLn(x));
     Assert.AreEqual(expected, Chi.PDFLn(dof, x));
 }
Example #13
0
 public void ValidateDensity(double dof, double x)
 {
     var n = new Chi(dof);
     double expected = (Math.Pow(2.0, 1.0 - (dof / 2.0)) * Math.Pow(x, dof - 1.0) * Math.Exp(-x * (x / 2.0))) / SpecialFunctions.Gamma(dof / 2.0);
     Assert.AreEqual(expected, n.Density(x));
     Assert.AreEqual(expected, Chi.PDF(dof, x));
 }
Example #14
0
 public void ValidateCumulativeDistribution(double dof, double x, double expected)
 {
     var chi = new Chi(dof);
     Assert.That(chi.CumulativeDistribution(x), Is.EqualTo(expected).Within(13));
     Assert.That(Chi.CDF(dof, x), Is.EqualTo(expected).Within(13));
     //double expected = SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0);
     //Assert.AreEqual(expected, n.CumulativeDistribution(x));
     //Assert.AreEqual(expected, Chi.CDF(dof, x));
 }
Example #15
0
 public void ValidateMode(double dof)
 {
     var n = new Chi(dof);
     if (dof >= 1)
     {
         Assert.AreEqual(Math.Sqrt(dof - 1), n.Mode);
     }
 }
Example #16
0
 public void CanCreateChi(double dof)
 {
     var n = new Chi(dof);
     Assert.AreEqual(dof, n.DegreesOfFreedom);
 }
Example #17
0
 public void ValidateMedianThrowsNotSupportedException()
 {
     var n = new Chi(1.0);
     Assert.Throws<NotSupportedException>(() => { var median = n.Median; });
 }
Example #18
0
 public void ValidateMean(double dof)
 {
     var n = new Chi(dof);
     Assert.AreEqual(Constants.Sqrt2 * (SpecialFunctions.Gamma((dof + 1.0) / 2.0) / SpecialFunctions.Gamma(dof / 2.0)), n.Mean);
 }
Example #19
0
 public void SetDofFailsWithNonPositiveDoF(double dof)
 {
     var n = new Chi(1.0);
     Assert.That(() => n.DegreesOfFreedom = dof, Throws.ArgumentException);
 }