Example #1
0
        public static VNode ProcessCircleEvent(VCircleEvent e, VNode root, VoronoiGraph vg, out VDataNode[] circleCheckList)
        {
            VEdgeNode eo;
            VDataNode b = e.NodeN;
            VDataNode a = LeftDataNode(b);
            VDataNode c = RightDataNode(b);
            if (a == null || b.Parent == null || c == null || !a.DataPoint.Equals(e.NodeL.DataPoint) || !c.DataPoint.Equals(e.NodeR.DataPoint))
            {
                circleCheckList = new VDataNode[] { };
                return root; // Abbruch da sich der Graph verändert hat
            }
            VEdgeNode eu = (VEdgeNode)b.Parent;
            circleCheckList = new[] { a, c };
            //1. Create the new Vertex
            Vector2 vNew = new Vector2(e.Center.X, e.Center.Y);
            //			VNew[0] = Fortune.ParabolicCut(a.DataPoint[0],a.DataPoint[1],c.DataPoint[0],c.DataPoint[1],ys);
            //			VNew[1] = (ys + a.DataPoint[1])/2 - 1/(2*(ys-a.DataPoint[1]))*(VNew[0]-a.DataPoint[0])*(VNew[0]-a.DataPoint[0]);
            vg.Vertices.Add(vNew);
            //2. Find out if a or c are in a distand part of the tree (the other is then b's sibling) and assign the new vertex
            if (eu.Left == b) // c is sibling
            {
                eo = EdgeToRightDataNode(a);

                // replace eu by eu's Right
                eu.Parent.Replace(eu, eu.Right);
            }
            else // a is sibling
            {
                eo = EdgeToRightDataNode(b);

                // replace eu by eu's Left
                eu.Parent.Replace(eu, eu.Left);
            }
            eu.Edge.AddVertex(vNew);
            //			///////////////////// uncertain
            //			if(eo==eu)
            //				return root;
            //			/////////////////////
            eo.Edge.AddVertex(vNew);
            //2. Replace eo by new Edge
            VoronoiEdge ve = new VoronoiEdge();
            ve.LeftData = a.DataPoint;
            ve.RightData = c.DataPoint;
            ve.AddVertex(vNew);
            vg.Edges.Add(ve);

            VEdgeNode ven = new VEdgeNode(ve, false);
            ven.Left = eo.Left;
            ven.Right = eo.Right;
            if (eo.Parent == null)
                return ven;
            eo.Parent.Replace(eo, ven);
            return root;
        }
Example #2
0
        /// <summary>
        /// Will return the new root (unchanged except in start-up)
        /// </summary>
        public static VNode ProcessDataEvent(VDataEvent e, VNode root, VoronoiGraph vg, double ys, out VDataNode[] circleCheckList)
        {
            if (root == null)
            {
                root = new VDataNode(e.DataPoint);
                circleCheckList = new[] { (VDataNode)root };
                return root;
            }
            //1. Find the node to be replaced
            VNode c = FindDataNode(root, ys, e.DataPoint.X);
            //2. Create the subtree (ONE Edge, but two VEdgeNodes)
            VoronoiEdge ve = new VoronoiEdge();
            ve.LeftData = ((VDataNode)c).DataPoint;
            ve.RightData = e.DataPoint;
            ve.VVertexA = Fortune.VVUnkown;
            ve.VVertexB = Fortune.VVUnkown;
            vg.Edges.Add(ve);

            VNode subRoot;
            if (Math.Abs(ve.LeftData.Y - ve.RightData.Y) < 1e-10)
            {
                if (ve.LeftData.X < ve.RightData.X)
                {
                    subRoot = new VEdgeNode(ve, false);
                    subRoot.Left = new VDataNode(ve.LeftData);
                    subRoot.Right = new VDataNode(ve.RightData);
                }
                else
                {
                    subRoot = new VEdgeNode(ve, true);
                    subRoot.Left = new VDataNode(ve.RightData);
                    subRoot.Right = new VDataNode(ve.LeftData);
                }
                circleCheckList = new[] { (VDataNode)subRoot.Left, (VDataNode)subRoot.Right };
            }
            else
            {
                subRoot = new VEdgeNode(ve, false);
                subRoot.Left = new VDataNode(ve.LeftData);
                subRoot.Right = new VEdgeNode(ve, true);
                subRoot.Right.Left = new VDataNode(ve.RightData);
                subRoot.Right.Right = new VDataNode(ve.LeftData);
                circleCheckList = new[] { (VDataNode)subRoot.Left, (VDataNode)subRoot.Right.Left, (VDataNode)subRoot.Right.Right };
            }

            //3. Apply subtree
            if (c.Parent == null)
                return subRoot;
            c.Parent.Replace(c, subRoot);
            return root;
        }
 /// <summary>
 /// Applies an optional cleanup method needed by Benjamine Ditter for
 /// laser data calculations.  This is not used by the MapWindow calculations
 /// </summary>
 /// <param name="vg">The output voronoi graph created in the Compute Voronoi Graph section</param>
 /// <param name="minLeftRightDist">A minimum left to right distance</param>
 /// <returns>The Voronoi Graph after it has been filtered.</returns>
 public static VoronoiGraph FilterVg(VoronoiGraph vg, double minLeftRightDist)
 {
     VoronoiGraph vgErg = new VoronoiGraph();
     foreach (VoronoiEdge ve in vg.Edges)
     {
         if (ve.LeftData.Distance(ve.RightData) >= minLeftRightDist)
             vgErg.Edges.Add(ve);
     }
     foreach (VoronoiEdge ve in vgErg.Edges)
     {
         vgErg.Vertices.Add(ve.VVertexA);
         vgErg.Vertices.Add(ve.VVertexB);
     }
     return vgErg;
 }
Example #4
0
        /// <summary>
        /// The original algorithm simply allows edges that have one defined point and 
        /// another "NAN" point.  Simply excluding the not a number coordinates fails
        /// to preserve the known direction of the ray.  We only need to extend this
        /// long enough to encounter the bounding box, not infinity.
        /// </summary>
        /// <param name="graph">The VoronoiGraph with the edge list</param>
        /// <param name="bounds">The polygon bounding the datapoints</param>
        private static void HandleBoundaries(VoronoiGraph graph, IEnvelope bounds)
        {
            
            List<ILineString> boundSegments = new List<ILineString>();
            List<VoronoiEdge> unboundEdges = new List<VoronoiEdge>();
            // Identify bound edges for intersection testing
            foreach (VoronoiEdge edge in graph.Edges)
            {
                if(edge.VVertexA.ContainsNan() || edge.VVertexB.ContainsNan())
                {
                    unboundEdges.Add(edge);
                    continue;
                }
                boundSegments.Add(new LineString(new List<Coordinate>{edge.VVertexA.ToCoordinate(), edge.VVertexB.ToCoordinate()}));
            }

            // calculate a length to extend a ray to look for intersections
            IEnvelope env = bounds;
            double h = env.Height;
            double w = env.Width;
            double len = Math.Sqrt(w * w + h * h);  // len is now long enough to pass entirely through the dataset no matter where it starts

            foreach (VoronoiEdge edge in unboundEdges)
            {
                // the unbound line passes thorugh start
                Coordinate start = (edge.VVertexB.ContainsNan())
                                        ? edge.VVertexA.ToCoordinate()
                                        : edge.VVertexB.ToCoordinate();

                // the unbound line should have a direction normal to the line joining the left and right source points
                double dx = edge.LeftData.X - edge.RightData.X;
                double dy = edge.LeftData.Y - edge.RightData.Y;
                double l = Math.Sqrt(dx*dx + dy*dy);

                

                // the slope of the bisector between left and right
                double sx = -dy/l;
                double sy = dx/l;

                Coordinate center = bounds.Center();
                if((start.X > center.X && start.Y > center.Y) || (start.X < center.X && start.Y < center.Y))
                {
                    sx = dy/l;
                    sy = -dx/l;
                }

                Coordinate end1 = new Coordinate(start.X + len*sx, start.Y + len * sy);
                Coordinate end2 = new Coordinate(start.X - sx * len, start.Y - sy * len);
                
                Coordinate end = (end1.Distance(center) < end2.Distance(center)) ? end2 : end1;
                if(bounds.Contains(end))
                {
                    end = new Coordinate(start.X - sx * len, start.Y - sy * len);
                }
                if (edge.VVertexA.ContainsNan())
                {
                    edge.VVertexA = new Vector2(end.ToArray());
                }
                else
                {
                    edge.VVertexB = new Vector2(end.ToArray());
                }
                
                
                
                
            }
            
        }
        /// <summary>
        /// Calculates a list of edges and junction vertices by using the specified points.
        /// This defaults to not using any tolerance for determining if points are equal,
        /// and will not use the cleanup algorithm, which breaks the HandleBoundaries
        /// method in the Voronoi class.
        /// </summary>
        /// <param name="vertices">The original points to use during the calculation</param>
        /// <returns>A VoronoiGraph structure containing the output geometries</returns>
        public static VoronoiGraph ComputeVoronoiGraph(double[] vertices)
        {
            //BinaryPriorityQueue pq = new BinaryPriorityQueue();
            SortedDictionary<VEvent, VEvent> pq = new SortedDictionary<VEvent, VEvent>();


            Dictionary<VDataNode, VCircleEvent> currentCircles = new Dictionary<VDataNode, VCircleEvent>();
            VoronoiGraph vg = new VoronoiGraph();
            VNode rootNode = null;
            for(int i = 0; i < vertices.Length/2; i++)
            {
                //pq.Push(new VDataEvent(new Vector(vertex)));
                VDataEvent e = new VDataEvent(new Vector2(vertices, i*2));
                if (pq.ContainsKey(e)) continue;
                pq.Add(e, e);
            }

          
            while (pq.Count > 0)
            {

                //VEvent ve = pq.Pop() as VEvent;
                VEvent ve = pq.First().Key;
                pq.Remove(ve);


                VDataNode[] circleCheckList = new VDataNode[] { };
                if (ve is VDataEvent)
                {
                    rootNode = VNode.ProcessDataEvent(ve as VDataEvent, rootNode, vg, ve.Y, out circleCheckList);
                }
                else if (ve is VCircleEvent)
                {
                    currentCircles.Remove(((VCircleEvent)ve).NodeN);
                    if (!((VCircleEvent)ve).Valid)
                        continue;
                    rootNode = VNode.ProcessCircleEvent(ve as VCircleEvent, rootNode, vg, out circleCheckList);
                }
                else if (ve != null) throw new Exception("Got event of type " + ve.GetType() + "!");
                foreach (VDataNode vd in circleCheckList)
                {
                    if (currentCircles.ContainsKey(vd))
                    {
                        currentCircles[vd].Valid = false;
                        currentCircles.Remove(vd);
                    }
                    if (ve == null) continue;
                    VCircleEvent vce = VNode.CircleCheckDataNode(vd, ve.Y);
                    if (vce == null) continue;
                    //pq.Push(vce);
                    pq.Add(vce, vce);

                    currentCircles[vd] = vce;
                }
                if (!(ve is VDataEvent)) continue;
                Vector2 dp = ((VDataEvent)ve).DataPoint;
                foreach (VCircleEvent vce in currentCircles.Values)
                {
                    if (MathTools.Dist(dp.X, dp.Y, vce.Center.X, vce.Center.Y) < vce.Y - vce.Center.Y && Math.Abs(MathTools.Dist(dp.X, dp.Y, vce.Center.X, vce.Center.Y) - (vce.Y - vce.Center.Y)) > 1e-10)
                        vce.Valid = false;
                }
            }

            // This is where the MapWindow version should exit since it uses the HandleBoundaries
            // function instead.  The following code is needed for Benjamin Ditter's original process to work.
            if (!DoCleanup) return vg;

            VNode.CleanUpTree(rootNode);
            foreach (VoronoiEdge ve in vg.Edges)
            {
                if (ve.Done)
                    continue;
                if (ve.VVertexB != VVUnkown) continue;
                ve.AddVertex(VVInfinite);
                if (Math.Abs(ve.LeftData.Y - ve.RightData.Y) < 1e-10 && ve.LeftData.X < ve.RightData.X)
                {
                    Vector2 t = ve.LeftData;
                    ve.LeftData = ve.RightData;
                    ve.RightData = t;
                }
            }

            ArrayList minuteEdges = new ArrayList();
            foreach (VoronoiEdge ve in vg.Edges)
            {
                if (ve.IsPartlyInfinite || !ve.VVertexA.Equals(ve.VVertexB)) continue;
                minuteEdges.Add(ve);
                // prevent rounding errors from expanding to holes
                foreach (VoronoiEdge ve2 in vg.Edges)
                {
                    if (ve2.VVertexA.Equals(ve.VVertexA))
                        ve2.VVertexA = ve.VVertexA;
                    if (ve2.VVertexB.Equals(ve.VVertexA))
                        ve2.VVertexB = ve.VVertexA;
                }
            }
            foreach (VoronoiEdge ve in minuteEdges)
            {
                vg.Edges.Remove(ve); 
            }
           
            return vg;
        }