Example #1
0
 /// <summary>
 /// This routine executes the recurrent neural network described by rnnDesc with inputs x, hx, cx, weights w 
 /// and outputs y, hy, cy. workspace is required for intermediate storage. reserveSpace stores data required 
 /// for training. The same reserveSpace data must be used for future calls to cudnnRNNBackwardData and 
 /// cudnnRNNBackwardWeights if these execute on the same input data. 
 /// </summary>
 /// <param name="xDesc">An array of tensor descriptors describing the input to each recurrent iteration. Each 
 /// tensor descriptor must have the same first dimension. The second dimension of the tensors may decrease 
 /// from element n to element n+1 but may not increase. The tensor must be fully packed.</param>
 /// <param name="x">Data pointer to GPU memory associated with the tensor descriptors in the array xDesc.</param>
 /// <param name="hxDesc">Handle to a previously initialized tensor descriptor describing the initial hidden state 
 /// of the RNN. The first dimension of the tensor must match the hiddenSize argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second 
 /// dimension of the first tensor described in xDesc. The third dimension must match the numLayers argument 
 /// passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="hx">Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL pointer 
 /// is passed, the initial hidden state of the network will be initialized to zero.</param>
 /// <param name="cxDesc">Handle to a previously initialized tensor descriptor describing the initial 
 /// cell state for LSTM networks. The first dimension of the tensor must match the hiddenSize argument 
 /// passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match 
 /// the second dimension of the first tensor described in xDesc. The third dimension must match the numLayers 
 /// argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully 
 /// packed.</param>
 /// <param name="cx">Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL pointer is 
 /// passed, the initial cell state of the network will be initialized to zero.</param>
 /// <param name="wDesc">Handle to a previously initialized filter descriptor describing the weights for the RNN.</param>
 /// <param name="w">Data pointer to GPU memory associated with the filter descriptor wDesc.</param>
 /// <param name="yDesc">An array of tensor descriptors describing the output from each recurrent iteration. The first 
 /// dimension of the tensor depends on the direction argument passed to the cudnnSetRNNDescriptor 
 /// call used to initialize rnnDesc: 
 /// * If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// * If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// The second dimension of the tensor n must match the second dimension of the tensor 
 /// n in xDesc. The tensor must be fully packed.</param>
 /// <param name="y">Data pointer to GPU memory associated with the output tensor descriptor yDesc.</param>
 /// <param name="hyDesc">Handle to a previously initialized tensor descriptor describing the final 
 /// hidden state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second dimension 
 /// of the first tensor described in xDesc. The third dimension must match the numLayers argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="hy">Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a 
 /// NULL pointer is passed, the final hidden state of the network will not be saved.</param>
 /// <param name="cyDesc">Handle to a previously initialized tensor descriptor describing the final cell state 
 /// for LSTM networks. The first dimension of the tensor must match the hiddenSize argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second dimension 
 /// of the first tensor described in xDesc. The third dimension must match the numLayers argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="cy">Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a NULL pointer is 
 /// passed, the final cell state of the network will be not be saved.</param>
 /// <param name="workspace">Data pointer to GPU memory to be used as a workspace for this call.</param>
 /// <param name="workSpaceSizeInBytes">Specifies the size in bytes of the provided workspace.</param>
 /// <param name="reserveSpace">Data pointer to GPU memory to be used as a reserve space for this call.</param>
 /// <param name="reserveSpaceSizeInBytes">Specifies the size in bytes of the provided reserveSpace.</param>
 public void RNNForwardTraining(
                                            TensorDescriptor[] xDesc,
                                            CudaDeviceVariable<double> x,
                                            TensorDescriptor hxDesc,
                                            CudaDeviceVariable<double> hx,
                                            TensorDescriptor cxDesc,
                                            CudaDeviceVariable<double> cx,
                                            FilterDescriptor wDesc,
                                            CudaDeviceVariable<double> w,
                                            TensorDescriptor[] yDesc,
                                            CudaDeviceVariable<double> y,
                                            TensorDescriptor hyDesc,
                                            CudaDeviceVariable<double> hy,
                                            TensorDescriptor cyDesc,
                                            CudaDeviceVariable<double> cy,
                                            CudaDeviceVariable<byte> workspace,
                                            SizeT workSpaceSizeInBytes,
                                            CudaDeviceVariable<byte> reserveSpace,
                                            SizeT reserveSpaceSizeInBytes)
 {
     var a1 = xDesc.Select(q => q.Desc).ToArray();
     var a2 = yDesc.Select(q => q.Desc).ToArray();
     res = CudaDNNNativeMethods.cudnnRNNForwardTraining(
         _handle, _desc, a1, x.DevicePointer, hxDesc.Desc, hx.DevicePointer, cxDesc.Desc, cx.DevicePointer, wDesc.Desc, w.DevicePointer,
         a2, y.DevicePointer, hyDesc.Desc, hy.DevicePointer, cyDesc.Desc, cy.DevicePointer, workspace.DevicePointer, workSpaceSizeInBytes, reserveSpace.DevicePointer, reserveSpaceSizeInBytes);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnRNNForwardTraining", res));
     if (res != cudnnStatus.Success) throw new CudaDNNException(res);
 }
Example #2
0
 /// <summary>
 /// This function is used to query the amount of parameter space required to execute the RNN described by 
 /// rnnDesc with inputs dimensions defined by xDesc. 
 /// </summary>
 /// <param name="xDesc">An array of tensor descriptors describing the input to each recurrent iteration</param>
 /// <param name="sizeInBytes">Minimum amount of GPU memory needed as parameter space to be able to execute an RNN with the specified descriptor and input tensors.</param>
 public void cudnnGetRNNParamsSize(
                                          TensorDescriptor[] xDesc,
                                          ref SizeT sizeInBytes
                                             )
 {
     var a1 = xDesc.Select(x => x.Desc).ToArray();
     res = CudaDNNNativeMethods.cudnnGetRNNParamsSize(_handle, _desc, a1, ref sizeInBytes);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnGetRNNParamsSize", res));
     if (res != cudnnStatus.Success) throw new CudaDNNException(res);
 }
Example #3
0
 /// <summary>
 /// This routine executes the recurrent neural network described by rnnDesc with 
 /// output gradients dy, dhy, dhc, weights w and input gradients dx, dhx, dcx. 
 /// workspace is required for intermediate storage. The data in reserveSpace must have 
 /// previously been generated by cudnnRNNForwardTraining. The same reserveSpace data must 
 /// be used for future calls to cudnnRNNBackwardWeights if they execute on the same input data. 
 /// </summary>
 /// <param name="yDesc">An array of tensor descriptors describing the output from each 
 /// recurrent iteration. The first dimension of the tensor depends on the direction 
 /// argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:
 /// * If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// * If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the 
 /// hiddenSize argument passed to cudnnSetRNNDescriptor.
 /// The second dimension of the tensor n must match the second dimension of the tensor n in dyDesc. 
 /// The tensor must be fully packed.</param>
 /// <param name="y">Data pointer to GPU memory associated with the output tensor descriptor yDesc.</param>
 /// <param name="dyDesc">An array of tensor descriptors describing the gradient at the output from each 
 /// recurrent iteration. The first dimension of the tensor depends on the direction argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc: 
 /// * If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// * If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// The second dimension of the tensor n must match the second dimension of the tensor n in dxDesc. The 
 /// tensor must be fully packed.</param>
 /// <param name="dy">Data pointer to GPU memory associated with the tensor descriptors in the array dyDesc.</param>
 /// <param name="dhyDesc">Handle to a previously initialized tensor descriptor describing the gradients at the 
 /// final hidden state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed 
 /// to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second 
 /// dimension of the first tensor described in dyDesc. The third dimension must match the numLayers argument 
 /// passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="dhy">Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If a NULL pointer 
 /// is passed, the gradients at the final hidden state of the network will be initialized to zero.</param>
 /// <param name="dcyDesc">Handle to a previously initialized tensor descriptor describing the gradients at 
 /// the final cell state of the RNN. The first dimension of the tensor must match the hiddenSize argument 
 /// passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the 
 /// second dimension of the first tensor described in dyDesc. The third dimension must match the numLayers argument 
 /// passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="dcy">Data pointer to GPU memory associated with the tensor descriptor dcyDesc. If a NULL pointer 
 /// is passed, the gradients at the final cell state of the network will be initialized to zero.</param>
 /// <param name="wDesc">Handle to a previously initialized filter descriptor describing the weights for the RNN.</param>
 /// <param name="w">Data pointer to GPU memory associated with the filter descriptor wDesc.</param>
 /// <param name="hxDesc">Handle to a previously initialized tensor descriptor describing the initial hidden 
 /// state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second 
 /// dimension of the first tensor described in xDesc. The third dimension must match the numLayers 
 /// argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be 
 /// fully packed.</param>
 /// <param name="hx">Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL pointer is 
 /// passed, the initial hidden state of the network will be initialized to zero.</param>
 /// <param name="cxDesc">Handle to a previously initialized tensor descriptor describing the 
 /// initial cell state for LSTM networks. The first dimension of the tensor must match the 
 /// hiddenSize argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The 
 /// second dimension must match the second dimension of the first tensor described in xDesc. The 
 /// third dimension must match the numLayers argument passed to the cudnnSetRNNDescriptor call 
 /// used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="cx">Data pointer to GPU memory associated with the tensor descriptor cxDesc. 
 /// If a NULL pointer is passed, the initial cell state of the network will be initialized to zero.</param>
 /// <param name="dxDesc">An array of tensor descriptors describing the gradient at the input of each recurrent iteration. 
 /// Each tensor descriptor must have the same first dimension. The second dimension of the tensors may decrease from 
 /// element n to element n+1 but may not increase. The tensor must be fully packed.</param>
 /// <param name="dx">Data pointer to GPU memory associated with the tensor descriptors in the array dxDesc. </param>
 /// <param name="dhxDesc">Handle to a previously initialized tensor descriptor describing the gradient at the initial hidden 
 /// state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed to the cudnnSetRNNDescriptor 
 /// call used to initialize rnnDesc. The second dimension must match the second dimension of the first tensor described in xDesc. 
 /// The third dimension must match the numLayers argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. 
 /// The tensor must be fully packed.</param>
 /// <param name="dhx">Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a NULL pointer is passed, the 
 /// gradient at the hidden input of the network will not be set.</param>
 /// <param name="dcxDesc">Handle to a previously initialized tensor descriptor describing the gradient 
 /// at the initial cell state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed 
 /// to the cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second dimension 
 /// of the first tensor described in xDesc. The third dimension must match the numLayers argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed.</param>
 /// <param name="dcx">Data pointer to GPU memory associated with the tensor descriptor dcxDesc. If 
 /// a NULL pointer is passed, the gradient at the cell input of the network will not be set.</param>
 /// <param name="workspace">Data pointer to GPU memory to be used as a workspace for this call.</param>
 /// <param name="workSpaceSizeInBytes">Specifies the size in bytes of the provided workspace.</param>
 /// <param name="reserveSpace">Data pointer to GPU memory to be used as a reserve space for this call.</param>
 /// <param name="reserveSpaceSizeInBytes">Specifies the size in bytes of the provided reserveSpace.</param>
 public void RNNBackwardData(
                                         TensorDescriptor[] yDesc,
                                         CudaDeviceVariable<float> y,
                                         TensorDescriptor[] dyDesc,
                                         CudaDeviceVariable<float> dy,
                                         TensorDescriptor dhyDesc,
                                         CudaDeviceVariable<float> dhy,
                                         TensorDescriptor dcyDesc,
                                         CudaDeviceVariable<float> dcy,
                                         FilterDescriptor wDesc,
                                         CudaDeviceVariable<float> w,
                                         TensorDescriptor hxDesc,
                                         CudaDeviceVariable<float> hx,
                                         TensorDescriptor cxDesc,
                                         CudaDeviceVariable<float> cx,
                                         TensorDescriptor[] dxDesc,
                                         CudaDeviceVariable<float> dx,
                                         TensorDescriptor dhxDesc,
                                         CudaDeviceVariable<float> dhx,
                                         TensorDescriptor dcxDesc,
                                         CudaDeviceVariable<float> dcx,
                                         CudaDeviceVariable<byte> workspace,
                                         SizeT workSpaceSizeInBytes,
                                         CudaDeviceVariable<byte> reserveSpace,
                                         SizeT reserveSpaceSizeInBytes)
 {
     var a1 = yDesc.Select(q => q.Desc).ToArray();
     var a2 = dyDesc.Select(q => q.Desc).ToArray();
     var a3 = dxDesc.Select(q => q.Desc).ToArray();
     res = CudaDNNNativeMethods.cudnnRNNBackwardData(
         _handle, _desc, a1, y.DevicePointer, a2, dy.DevicePointer, dhyDesc.Desc, dhy.DevicePointer, dcyDesc.Desc, dcy.DevicePointer, wDesc.Desc, w.DevicePointer,
         hxDesc.Desc, hx.DevicePointer, cxDesc.Desc, cx.DevicePointer, a3, dx.DevicePointer, dhxDesc.Desc, dhx.DevicePointer, dcxDesc.Desc, dcx.DevicePointer,
         workspace.DevicePointer, workSpaceSizeInBytes, reserveSpace.DevicePointer, reserveSpaceSizeInBytes);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnRNNBackwardData", res));
     if (res != cudnnStatus.Success) throw new CudaDNNException(res);
 }
Example #4
0
 /// <summary>
 /// This routine accumulates weight gradients dw from the recurrent neural network described 
 /// by rnnDesc with inputs x, hx, and outputs y. The mode of operation in this case is additive, 
 /// the weight gradients calculated will be added to those already existing in dw. workspace 
 /// is required for intermediate storage. The data in reserveSpace must have previously been 
 /// generated by cudnnRNNBackwardData.
 /// </summary>
 /// <param name="xDesc">An array of tensor descriptors describing the input to each recurrent iteration. 
 /// Each tensor descriptor must have the same first dimension. The second dimension of the tensors may 
 /// decrease from element n to element n+1 but may not increase. The tensor must be fully packed.</param>
 /// <param name="x">Data pointer to GPU memory associated with the tensor descriptors in the array xDesc.</param>
 /// <param name="hxDesc">Handle to a previously initialized tensor descriptor describing the initial hidden 
 /// state of the RNN. The first dimension of the tensor must match the hiddenSize argument passed to the 
 /// cudnnSetRNNDescriptor call used to initialize rnnDesc. The second dimension must match the second dimension
 /// of the first tensor described in xDesc. The third dimension must match the numLayers argument passed to 
 /// the cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully packed. </param>
 /// <param name="hx">Data pointer to GPU memory associated with the tensor descriptor hxDesc. If 
 /// a NULL pointer is passed, the initial hidden state of the network will be initialized to zero.</param>
 /// <param name="yDesc">An array of tensor descriptors describing the output from each 
 /// recurrent iteration. The first dimension of the tensor depends on the direction 
 /// argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:
 /// * If direction is CUDNN_UNIDIRECTIONAL the first dimension should match the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// * If direction is CUDNN_BIDIRECTIONAL the first dimension should match double the hiddenSize 
 /// argument passed to cudnnSetRNNDescriptor.
 /// The second dimension of the tensor n must match the second dimension of the tensor n in dyDesc. 
 /// The tensor must be fully packed.</param>
 /// <param name="y">Data pointer to GPU memory associated with the output tensor descriptor yDesc.</param>
 /// <param name="workspace">Data pointer to GPU memory to be used as a workspace for this call.</param>
 /// <param name="workSpaceSizeInBytes">Specifies the size in bytes of the provided workspace.</param>
 /// <param name="dwDesc">Handle to a previously initialized filter descriptor describing the gradients of the weights for the RNN.</param>
 /// <param name="dw">Data pointer to GPU memory associated with the filter descriptor dwDesc.</param>
 /// <param name="reserveSpace">Data pointer to GPU memory to be used as a reserve space for this call.</param>
 /// <param name="reserveSpaceSizeInBytes">Specifies the size in bytes of the provided reserveSpace.</param>
 public void RNNBackwardWeights(
                                            TensorDescriptor[] xDesc,
                                            CudaDeviceVariable<float> x,
                                            TensorDescriptor hxDesc,
                                            CudaDeviceVariable<float> hx,
                                            TensorDescriptor[] yDesc,
                                            CudaDeviceVariable<float> y,
                                            CudaDeviceVariable<byte> workspace,
                                            SizeT workSpaceSizeInBytes,
                                            FilterDescriptor dwDesc,
                                            CudaDeviceVariable<float> dw,
                                            CudaDeviceVariable<byte> reserveSpace,
                                            SizeT reserveSpaceSizeInBytes)
 {
     var a1 = xDesc.Select(q => q.Desc).ToArray();
     var a2 = yDesc.Select(q => q.Desc).ToArray();
     res = CudaDNNNativeMethods.cudnnRNNBackwardWeights(
         _handle, _desc, a1, x.DevicePointer, hxDesc.Desc, hx.DevicePointer, a2, y.DevicePointer, workspace.DevicePointer, workSpaceSizeInBytes, dwDesc.Desc, dw.DevicePointer, reserveSpace.DevicePointer, reserveSpaceSizeInBytes);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnRNNBackwardWeights", res));
     if (res != cudnnStatus.Success) throw new CudaDNNException(res);
 }
Example #5
0
 /// <summary>
 /// This function is used to obtain a pointer and descriptor for the matrix parameters in layer within 
 /// the RNN described by rnnDesc with inputs dimensions defined by xDesc. 
 /// </summary>
 /// <param name="layer">The layer to query.</param>
 /// <param name="xDesc">An array of tensor descriptors describing the input to each recurrent iteration.</param>
 /// <param name="wDesc">Handle to a previously initialized filter descriptor describing the weights for the RNN.</param>
 /// <param name="w">Data pointer to GPU memory associated with the filter descriptor wDesc.</param>
 /// <param name="linLayerID">
 /// The linear layer to obtain information about: 
 /// * If mode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH a value of 0 references the matrix multiplication 
 /// applied to the input from the previous layer, a value of 1 references the matrix multiplication applied to the recurrent input.
 /// * If mode in rnnDesc was set to CUDNN_LSTM values of 0-3 reference matrix multiplications applied to the input from the 
 /// previous layer, value of 4-7 reference matrix multiplications applied to the recurrent input.
 ///     ‣ Values 0 and 4 reference the input gate. 
 ///     ‣ Values 1 and 5 reference the forget gate. 
 ///     ‣ Values 2 and 6 reference the new memory gate. 
 ///     ‣ Values 3 and 7 reference the output gate.
 /// * If mode in rnnDesc was set to CUDNN_GRU values of 0-2 reference matrix multiplications applied to the input 
 /// from the previous layer, value of 3-5 reference matrix multiplications applied to the recurrent input. 
 ///     ‣ Values 0 and 3 reference the reset gate. 
 ///     ‣ Values 1 and 4 reference the update gate. 
 ///     ‣ Values 2 and 5 reference the new memory gate.
 /// </param>
 /// <param name="linLayerMatDesc">Handle to a previously created filter descriptor.</param>
 /// <param name="linLayerMat">Data pointer to GPU memory associated with the filter descriptor linLayerMatDesc.</param>
 public void GetRNNLinLayerMatrixParams(
                      int layer,
                      TensorDescriptor[] xDesc,
                      FilterDescriptor wDesc,
                      CudaDeviceVariable<double> w,
                      int linLayerID,
                      FilterDescriptor linLayerMatDesc,
                      CudaDeviceVariable<SizeT> linLayerMat // void **
                      )
 {
     var a1 = xDesc.Select(x => x.Desc).ToArray();
     res = CudaDNNNativeMethods.cudnnGetRNNLinLayerMatrixParams(_handle, _desc, layer, a1, wDesc.Desc, w.DevicePointer, linLayerID, linLayerMatDesc.Desc, linLayerMat.DevicePointer);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "cudnnGetRNNLinLayerMatrixParams", res));
     if (res != cudnnStatus.Success) throw new CudaDNNException(res);
 }