Example #1
0
 public float[] Compute(ComputeDevice calculator, float[] input, IActivationFunction activationFunction)
 {
     return(calculator.CalculateLayer(weightMx, biases, input, activationFunction));
 }
        public override float[] CalculateLayer(float[,] weightMx, float[] bias, float[] prevActivations, IActivationFunction sigmoidFunction)
        {
            float[] ret = new float[weightMx.GetLength(0)];
            for (int m = 0; m < weightMx.GetLength(0); m++)
            {
                float acc = 0.0f;
                for (int k = 0; k < weightMx.GetLength(1); k++)
                {
                    acc += weightMx[m, k] * prevActivations[k];
                }
                acc += bias[m];

                ret[m] = sigmoidFunction.Calculate(acc);
            }
            return(ret);
        }
Example #3
0
 internal Layer(Layer o)
 {
     this.activationFunction = o.activationFunction;
     this.weightMx           = (float[, ])o.weightMx.Clone();
     this.biases             = (float[])o.biases.Clone();
 }
 public abstract unsafe float[] CalculateLayer(float[,] weightMx, float[] bias, float[] prevActivations, IActivationFunction sigmoidFunction);
Example #5
0
        /// <summary>
        /// Create a network with specific weights and biases
        /// </summary>
        /// <param name="inputLayers">A structure containing the weights and biases for each network</param>
        /// <param name="activationFunction">The activation function used by the network</param>
        /// <returns></returns>
        public static Network CreateNetwork(List <List <Tuple <List <float>, float> > > inputLayers, IActivationFunction activationFunction)
        {
            List <Layer> layers = new List <Layer>();

            foreach (var layerData in inputLayers)
            {
                int neuronCountInLayer = layerData.Count;
                int weightsPerNeuron   = layerData[0].Item1.Count;

                if (layers.Count > 0)
                {
                    if (weightsPerNeuron != layers.Last().biases.Length)
                    {
                        throw new Exception("Invalid layer config! Layer #" + layers.Count + " doesnt have the number of biases required by the previous layer!");
                    }
                    if (weightsPerNeuron != layers.Last().weightMx.GetLength(0))
                    {
                        throw new Exception("Invalid layer config! Layer #" + layers.Count + " doesnt have the number of weights required by the previous layer!");
                    }
                }

                float[,] weightMx = new float[neuronCountInLayer, weightsPerNeuron];
                float[] biases = new float[neuronCountInLayer];

                for (int i = 0; i < neuronCountInLayer; ++i)
                {
                    for (int j = 0; j < weightsPerNeuron; ++j)
                    {
                        weightMx[i, j] = layerData[i].Item1[j];
                    }
                    biases[i] = layerData[i].Item2;
                }

                layers.Add(new Layer(weightMx, biases));
            }

            return(new Network(layers, activationFunction));
        }
Example #6
0
 Network(List <Layer> layers, IActivationFunction activationFunction)
 {
     this.layers                 = layers;
     this.activationFunction     = activationFunction;
     this.activationFunctionName = activationFunction.GetSerializedName();
 }
Example #7
0
 public override float CalculateDelta(float z, float a, float desiredOutput, IActivationFunction activationFunction)
 {
     return(a - desiredOutput);
 }
Example #8
0
 public abstract float CalculateDelta(float z, float a, float desiredOutput, IActivationFunction activationFunction);
Example #9
0
 public override float[] CalculateLayer(float[,] weightMx, float[] bias, float[] prevActivations, IActivationFunction sigmoidFunction)
 {
     throw new NotImplementedException();
 }