Example #1
0
        CModel TopoModelFile; // Create topological model file

        #endregion Fields

        #region Constructors

        /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        // Constructor - new
        public CFEM_CALC(CModel model, bool bDebugging)
        {
            // Load Topological model
            TopoModelFile = new CModel();
            TopoModelFile = model;

            // Generate FEM model data from Topological model
            // Prepare solver data
            // Fill local and global matrices of FEM elements

            FEMModel = new CGenex(TopoModelFile);

            ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Temp - display matrices

            if (bDebugging)
            {
                for (int i = 0; i < FEMModel.m_arrFemMembers.Length; i++)
                {
                    // Member ID
                    Console.WriteLine("Member ID: " + FEMModel.m_arrFemMembers[i].ID + "\n");
                    // kij_0 - local stiffeness matrix       6 x  6
                    Console.WriteLine("Local stiffeness matrix k" + FEMModel.m_arrFemMembers[i].NodeStart.ID + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "0 - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fkLocMatr.Print2DMatrixFormated();
                    // A  Tranformation Rotation Matrixes    6 x  6
                    Console.WriteLine("Tranformation rotation matrix A - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fATRMatr3D.Print2DMatrixFormated();
                    // B  Transfer Matrixes                  6 x  6
                    Console.WriteLine("Transfer matrix B - Dimensions: 6 x 6 \n");
                    FEMModel.m_arrFemMembers[i].m_fBTTMatr3D.Print2DMatrixFormated();
                    // Kij - global matrix of member         12 x 12
                    Console.WriteLine("Global stiffeness matrix K" + FEMModel.m_arrFemMembers[i].NodeStart.ID + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "0 - Dimensions: 12 x 12 \n");
                    FEMModel.m_arrFemMembers[i].m_fKGlobM.Print2DMatrixFormated_ABxCD(FEMModel.m_arrFemMembers[i].m_fKGlobM.m_fArrMembersABxCD);
                    // Element Load Vectors                  2 x 6
                    Console.WriteLine("Member load vector - primary end forces in LCS at start node ID: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_LCS_StNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in LCS at end node ID: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_LCS_EnNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in GCS at start node ID: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_GCS_StNode.Print1DVector();
                    Console.WriteLine("Member load vector - primary end forces in GCS at end node ID: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + " - Dimensions: 6 x 1 \n");
                    FEMModel.m_arrFemMembers[i].m_VElemPEF_GCS_EnNode.Print1DVector();
                }
            }

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Set Global Code Number of Nodes / Nastavit globalne kodove cisla uzlov
            // Save indexes of nodes and DOF which are free and represent vector of uknown variables in solution
            SetNodesGlobCodeNo(); // Nastavi DOF v uzloch a ich globalne kodove cisla, konecne CodeNo urci velkost matice konstrukcie

            // Fill members of structure global vector of displacement
            // Now we know number of not restrained DOF, so we can allocate array size
            m_fDisp_Vector_CN = new int[m_iCodeNo, 3]; // 1st - global DOF code number, 2nd - Node index, 3rd - local code number of DOF in NODE

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Save it as array of arrays n x 2 (1st value is index - node index (0 - n-1) , 2nd value is DOF index (0-5)
            // n - total number of nodes in model
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            FillGlobalDisplCodeNo();

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Right side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            m_M_K_Structure = new CMatrix(m_iCodeNo);

            // Fill Global Stiffeness Matrix
            FillGlobalMatrix();

            // Global Stiffeness Matrix    m_iCodeNo x  m_iCodeNo
            if (bDebugging)
            {
                Console.WriteLine("Global stiffeness matrix - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                m_M_K_Structure.Print2DMatrixFormated();
            }

            // Auxiliary temporary transformation from 2D to 1D array / from float do double
            // Pomocne prevody medzi jednorozmernym, dvojrozmernym polom a triedou Matrix,
            // bude nutne zladit a urcit jeden format v akom budeme pracovat s datami a potom zmazat

            CArray objArray = new CArray();
            // Convert Size
            float[] m_M_K_fTemp1D = objArray.ArrTranf2Dto1D(m_M_K_Structure.m_fArrMembers);
            // Convert Type
            double[] m_M_K_dTemp1D = objArray.ArrConverFloatToDouble1D(m_M_K_fTemp1D);

            MatrixF64 objMatrix = new MatrixF64(m_iCodeNo, m_iCodeNo, m_M_K_dTemp1D);
            // Print Created Matrix of MatrixF64 Class
            if (bDebugging)
            {
                Console.WriteLine("Global stiffeness matrix in F64 Class - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                objMatrix.WriteLine();
            }
            // Get Inverse Global Stiffeness Matrix
            MatrixF64 objMatrixInv = objMatrix.Inverse();
            // Print Inverse Matrix
            if (bDebugging)
            {
                Console.WriteLine("Inverse global stiffeness matrix - Dimensions: " + m_iCodeNo + " x " + m_iCodeNo + "\n");
                objMatrixInv.WriteLine();
            }
            // Convert Type
            float[] m_M_K_Inv_fTemp1D = objArray.ArrConverMatrixF64ToFloat1D(objMatrixInv);
            // Inverse Global Stiffeness Matrix of Structure - Allocate Memory (Matrix Size)
            CMatrix m_M_K_Structure_Inv = new CMatrix(m_iCodeNo);
            m_M_K_Structure_Inv.m_fArrMembers = objArray.ArrTranf1Dto2D(m_M_K_Inv_fTemp1D);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Left side of Equation System
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Load Vector - Allocate Memory (Vector Size)
            m_V_Load = new CVector(m_iCodeNo);

            // Fill Global Load Vector
            FillGlobalLoadVector();

            // Display Global Load Vector
            if (bDebugging)
            {
                Console.WriteLine("Global load vector - Dimensions: " + m_iCodeNo + " x 1 \n");
                m_V_Load.Print1DVector();
            }

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Solution - calculation of unknown displacement of nodes in GCS - system of linear equations
            // Start Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Global Displacement Vector - Allocate Memory (Vector Size)
            m_V_Displ = new CVector(m_iCodeNo);

            // Fill Global Displacement Vector
            m_V_Displ = VectorF.fMultiplyMatrVectr(m_M_K_Structure_Inv, m_V_Load);

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // End Solver
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

            // Display Global Displacement Vector - solution result
            if (bDebugging)
            {
                Console.WriteLine("Global displacement vector - Dimensions: " + m_iCodeNo + " x 1 \n");
                m_V_Displ.Print1DVector();
            }

            // Set displacements and rotations of DOF in GCS to appropriate node DOF acc. to global code numbers
            for (int i = 0; i < m_iCodeNo; i++)
            {
                // Check if DOF is default (free - ) or has some initial value (settlement; soil consolidation etc.)
                // See default values - float.PositiveInfinity
                if (FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] == float.PositiveInfinity)
                    FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] = m_V_Displ.FVectorItems[i]; // set calculated
                else // some real initial value exists
                    FEMModel.m_arrFemNodes[m_fDisp_Vector_CN[i, 1]].m_VDisp.FVectorItems[m_fDisp_Vector_CN[i, 2]] += m_V_Displ.FVectorItems[i]; // add calculated (to sum)
            }

            // Set default zero displacements or rotations in GCS to fixed DOF
            for (int i = 0; i < FEMModel.m_arrFemNodes.Length; i++)
            {
                for (int j = 0; j < FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems.Length; j++) // Check each DOF of all nodes
                {
                    if (FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems[j] == float.PositiveInfinity) // Check that default infinity value wasn't changed
                        FEMModel.m_arrFemNodes[i].m_VDisp.FVectorItems[j] = 0; // Set zero
                }
            }

            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            // Get final end forces at element in global coordinate system GCS
            /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
            if (bDebugging)
            {
                for (int i = 0; i < FEMModel.m_arrFemMembers.Length; i++)
                {
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_GCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node End Forces in GCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_GCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_GCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node End Forces in GCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_GCS_EnNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node End Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_LCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemEF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node End Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemEF_LCS_EnNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemIF_LCS_StNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeStart.ID + "; " + "Start Node Internal Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemIF_LCS_StNode.Print1DVector();
                    FEMModel.m_arrFemMembers[i].GetArrElemIF_LCS_EnNode();
                    Console.WriteLine("Element Index No.: " + i + "; " + "Node No.: " + FEMModel.m_arrFemMembers[i].NodeEnd.ID + "; " + "End Node Internal Forces in LCS");
                    FEMModel.m_arrFemMembers[i].m_VElemIF_LCS_EnNode.Print1DVector();
                }
            }

            // Calculate IF in x-places

            int inum_cut = 11;
            int inum_segm = 10;
        }