/// <summary> /// Train neural netowrk /// </summary> /// <param name="setting">NeuralNetworkSettings</param> /// <param name="info">NetworkInfo</param> /// <param name="inp">Input</param> /// <param name="dout">Output</param> /// <param name="topo">Topography</param> /// <param name="initialWeights">Weights</param> /// <param name="act">Activation</param> /// <param name="gain">Gain</param> /// <param name="iw">Index</param> public TrainResult Train(ref NeuralNetworkSettings setting, ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo, Weights initialWeights, ref Activation act, ref Gain gain, ref Index iw) { TrainResult result = new TrainResult(); result.weights = new Weights(initialWeights.Length); result.iterations = 0; result.sse = 0; try { if (OnDebug != null) { debug(setting.ToString()); debug(act.ToString()); debug(gain.ToString()); } result.weights = initialWeights.Backup(); error.CalculateError(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) { debug("\r\nFirst error value: " + error.Error.ToString() + "\r\n"); } SSE.Clear(); RMSE.Clear(); SSE[0] = result.sse = error.Error; hessians.Clear(); var hessian = new Hessian(ref info); Input ii = inp.Copy().ToInput(); Output oo = dout.Copy().ToOutput(); for (result.iterations = 1; result.iterations < setting.MaxIterations; result.iterations++) { hessian.Compute(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) debug(hessian.ToString()); hessians.Add(hessian.HessianMat); Weights ww_backup = result.weights.Backup(); for (int jw = 0; jw < 30; jw++) { var diff = (hessian.HessianMat + (I * setting.MU)).SolveEquatation(hessian.GradientMat).Transposed; if (OnDebug != null) { debug("\r\nOdejmuję"); debug(diff.MatrixToString()); } result.weights = ww_backup - diff.ToWeights(); result.weights.Name = "Weights nr " + jw.ToString(); if (OnDebug != null) { bool areSame = result.weights.IsEqual(ww_backup); debug("\r\nWeights are same as previously backed up"); debug(result.weights.ToString()); } SSE[result.iterations] = result.sse = error.CalculateError(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) debug("\r\nSSE[" + result.iterations.ToString() + "] = " + error.Error.ToString()); if (SSE.CurrentSSE() <= SSE.PreviousSSE(result.iterations)) { if (setting.MU > setting.MUL) { setting.MU /= setting.Scale; } break; } if (setting.MU < setting.MUH) { setting.MU *= setting.Scale; } } double rmse = Math.Sqrt((SSE.CurrentSSE()) / inp.Rows); RMSE[result.iterations] = rmse; updateChart(result.iterations, rmse); if ((double)SSE[result.iterations] < setting.MaxError) { break; } if (OnDebug != null) debug("Błąd: " + rmse.ToString()); if ( (SSE.PreviousSSE(result.iterations) - ((double)SSE[result.iterations])) / SSE.PreviousSSE(result.iterations) < NetworkError.DesiredError//0.000000000000001 ) { break; } } } catch (Exception ex) { throw new NeuralNetworkError("Błąd uczenia sieci. " + ex.Message, ex); } return result; }
/// <summary> /// Train neural netowrk /// </summary> /// <param name="setting">NeuralNetworkSettings</param> /// <param name="info">NetworkInfo</param> /// <param name="inp">Input</param> /// <param name="dout">Output</param> /// <param name="topo">Topography</param> /// <param name="initialWeights">Weights</param> /// <param name="act">Activation</param> /// <param name="gain">Gain</param> /// <param name="iw">Index</param> public TrainResult Train(ref NeuralNetworkSettings setting, ref NetworkInfo info, ref Input inp, ref Output dout, ref Topography topo, Weights initialWeights, ref Activation act, ref Gain gain, ref Index iw) { TrainResult result = new TrainResult(); result.weights = new Weights(initialWeights.Length); result.iterations = 0; result.sse = 0; try { if (OnDebug != null) { debug(setting.ToString()); debug(act.ToString()); debug(gain.ToString()); } result.weights = initialWeights.Backup(); error.CalculateError(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) { debug("\r\nFirst error value: " + error.Error.ToString() + "\r\n"); } SSE.Clear(); RMSE.Clear(); SSE[0] = result.sse = error.Error; hessians.Clear(); var hessian = new Hessian(ref info); Input ii = inp.Copy().ToInput(); Output oo = dout.Copy().ToOutput(); for (result.iterations = 1; result.iterations < setting.MaxIterations; result.iterations++) { hessian.Compute(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) { debug(hessian.ToString()); } hessians.Add(hessian.HessianMat); Weights ww_backup = result.weights.Backup(); for (int jw = 0; jw < 30; jw++) { var diff = (hessian.HessianMat + (I * setting.MU)).SolveEquatation(hessian.GradientMat).Transposed; if (OnDebug != null) { debug("\r\nOdejmuję"); debug(diff.MatrixToString()); } result.weights = ww_backup - diff.ToWeights(); result.weights.Name = "Weights nr " + jw.ToString(); if (OnDebug != null) { bool areSame = result.weights.IsEqual(ww_backup); debug("\r\nWeights are same as previously backed up"); debug(result.weights.ToString()); } SSE[result.iterations] = result.sse = error.CalculateError(ref info, ref inp, ref dout, ref topo, result.weights, ref act, ref gain, ref iw); if (OnDebug != null) { debug("\r\nSSE[" + result.iterations.ToString() + "] = " + error.Error.ToString()); } if (SSE.CurrentSSE() <= SSE.PreviousSSE(result.iterations)) { if (setting.MU > setting.MUL) { setting.MU /= setting.Scale; } break; } if (setting.MU < setting.MUH) { setting.MU *= setting.Scale; } } double rmse = Math.Sqrt((SSE.CurrentSSE()) / inp.Rows); RMSE[result.iterations] = rmse; updateChart(result.iterations, rmse); if ((double)SSE[result.iterations] < setting.MaxError) { break; } if (OnDebug != null) { debug("Błąd: " + rmse.ToString()); } if ( (SSE.PreviousSSE(result.iterations) - ((double)SSE[result.iterations])) / SSE.PreviousSSE(result.iterations) < NetworkError.DesiredError//0.000000000000001 ) { break; } } } catch (Exception ex) { throw new NeuralNetworkError("Błąd uczenia sieci. " + ex.Message, ex); } return(result); }//trainer end
public void Hessian___Gradient___Calculation___Test() { int accuracy = 15; /* function obliczanie_hesjan_gradient() clear(); inp = [-1 -1;-1 1; 1 -1]; dout = [1;0;0]; topo = [3 1 2 4 1 2 3]; ww = [1 1 1 1 1 1 1]; act = [2 0]; gain = [1 1]; param = [3 2 1 7 2]; iw = [1 4 8]; format long; [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw); fprintf('Otrzymany gradient:\n'); disp(gradient); fprintf('\nOtrzymany hesjan:\n'); disp(hessian); % To jest otrzymywane % Otrzymany gradient: % -0.839948683228052 % 2.319597374905329 % 2.319597374905329 % -2.000000000000000 % 5.523188311911530 % 5.523188311911531 % 6.889667569278484 % % % Otrzymany hesjan: % Columns 1 through 6 % % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 % % Column 7 % % -0.639700008449225 % 1.279400016898449 % 1.279400016898449 % -1.523188311911530 % 3.046376623823059 % 3.046376623823059 % 3.480153950315843 end */ Input input = new Input(3, 2);//inp = [-1 -1;-1 1; 1 -1]; input[0, 0] = -1; input[0, 1] = -1; input[1, 0] = -1; input[1, 1] = 1; input[2, 0] = 1; input[2, 1] = -1; Output output = new Output(3, 1);//dout = [1;0;0]; output[0, 0] = 1; output[1, 0] = 0; output[2, 0] = 0; NetworkInfo info = new NetworkInfo();//param = [3 2 1 7 2]; info.ni = 2; info.nn = 2; info.no = 1; info.np = 3; info.nw = 7; VectorHorizontal vh = new VectorHorizontal(3); vh[0, 0] = 2; vh[0, 1] = 1; vh[0, 2] = 1; Topography topo = Topography.Generate(TopographyType.BMLP, vh);//topo = [3 1 2 4 1 2 3]; //w C# indeksy są od zera a nie od 1 więc wszystko o 1 w dół przestawione jest Assert.AreEqual(2, topo[0]); Assert.AreEqual(0, topo[1]); Assert.AreEqual(1, topo[2]); Assert.AreEqual(3, topo[3]); Assert.AreEqual(0, topo[4]); Assert.AreEqual(1, topo[5]); Assert.AreEqual(2, topo[6]); Weights weights = new Weights(info.nw);//w = [1 1 1 1 1 1 1]; weights.FillWithNumber(1);//załatwione Activation act = new Activation(2);//act = [2 0]; act[0] = 2; act[1] = 0; Gain gain = new Gain(2);//gain = [1 1]; gain[0] = 1; gain[1] = 1; Index iw = Index.Find(ref topo);//iw = [1 4 8]; //ta sama sytuacja, indeksy od 0 startują Assert.AreEqual(0, iw[0]); Assert.AreEqual(3, iw[1]); Assert.AreEqual(7, iw[2]); Console.WriteLine("Testowanie obliczania gradientu i macierzy hesjana"); Console.WriteLine("Użyte dane:"); Console.WriteLine("\nDane wejściowe:"); Console.WriteLine(input.MatrixToString()); Console.WriteLine("\nDane wyjściowe:"); Console.WriteLine(output.MatrixToString()); Console.WriteLine("\nWagi;"); Console.WriteLine(weights.MatrixToString()); Console.WriteLine("\nTopologia:"); Console.WriteLine(topo.MatrixToString()); Console.WriteLine("\nIndeksy topologii:"); Console.WriteLine(iw.MatrixToString()); Console.WriteLine("\nFunkcje aktywacji:"); Console.WriteLine(act.MatrixToString()); Console.WriteLine("\nWzmocnienia (gains):"); Console.WriteLine(gain.MatrixToString()); Console.WriteLine("\nParametry (param):"); Console.WriteLine(info.ToString()); Hessian hess = new Hessian(ref info); hess.Compute(ref info, ref input, ref output, ref topo, weights, ref act, ref gain, ref iw); var g = hess.GradientMat; var h = hess.HessianMat; Console.WriteLine("\nSprawdzanie gradientu z dokładnością do 15 miejsc po przecinku"); var matG = new double[] { -0.839948683228052, 2.319597374905329, 2.319597374905329, -2.000000000000000, 5.523188311911530, 5.523188311911531, 6.889667569278484 }; /* % Otrzymany gradient: % -0.839948683228052 % 2.319597374905329 % 2.319597374905329 % -2.000000000000000 % 5.523188311911530 % 5.523188311911531 % 6.889667569278484 */ for (int i = 0; i < matG.Length; i++) { Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", Math.Round(g[i, 0], accuracy), matG[i], Math.Round(g[i, 0], accuracy) == matG[i] ? "OK" : "źle")); } Assert.AreEqual(-0.839948683228052, Math.Round(g[0, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[1, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[2, 0], accuracy)); Assert.AreEqual(-2.000000000000000, Math.Round(g[3, 0], accuracy)); Assert.AreEqual(5.523188311911530, Math.Round(g[4, 0], accuracy)); Assert.AreEqual(5.523188311911531, Math.Round(g[5, 0], accuracy)); Assert.AreEqual(6.889667569278484, Math.Round(g[6, 0], accuracy)); Console.WriteLine("\nSprawdzanie macierzy hesjana\nPorównania z dokładnością do 15 miejsc po przecinku"); MatrixMB matH = new MatrixMB(7, 7); //col 1 matH[0, 0] = 1.058270685684809; matH[1, 0] = -0.705513790456539; matH[2, 0] = -0.705513790456539; matH[3, 0] = 2.519846049684157; matH[4, 0] = -1.679897366456105; matH[5, 0] = -1.679897366456105; matH[6, 0] = -0.639700008449225; //col 2 matH[0, 1] = -0.705513790456539; matH[1, 1] = 1.058270685684809; matH[2, 1] = 0.352756895228269; matH[3, 1] = -1.679897366456105; matH[4, 1] = 2.519846049684157; matH[5, 1] = 0.839948683228052; matH[6, 1] = 1.279400016898449; //col 3 matH[0, 2] = -0.705513790456539; matH[1, 2] = 0.352756895228269; matH[2, 2] = 1.058270685684809; matH[3, 2] = -1.679897366456105; matH[4, 2] = 0.839948683228052; matH[5, 2] = 2.519846049684157; matH[6, 2] = 1.279400016898449; //col 4 matH[0, 3] = 2.519846049684157; matH[1, 3] = -1.679897366456105; matH[2, 3] = -1.679897366456105; matH[3, 3] = 6.000000000000000; matH[4, 3] = -4.000000000000000; matH[5, 3] = -4.000000000000000; matH[6, 3] = -1.523188311911530; //col 5 matH[0, 4] = -1.679897366456105; matH[1, 4] = 2.519846049684157; matH[2, 4] = 0.839948683228052; matH[3, 4] = -4.000000000000000; matH[4, 4] = 6.000000000000000; matH[5, 4] = 2.000000000000000; matH[6, 4] = 3.046376623823059; //col 6 matH[0, 5] = -1.679897366456105; matH[1, 5] = 0.839948683228052; matH[2, 5] = 2.519846049684157; matH[3, 5] = -4.000000000000000; matH[4, 5] = 2.000000000000000; matH[5, 5] = 6.000000000000000; matH[6, 5] = 3.046376623823059; //col 7 matH[0, 6] = -0.639700008449225; matH[1, 6] = 1.279400016898449; matH[2, 6] = 1.279400016898449; matH[3, 6] = -1.523188311911530; matH[4, 6] = 3.046376623823059; matH[5, 6] = 3.046376623823059; matH[6, 6] = 3.480153950315843; for (int k = 0; k < h.Cols; k++) { Console.WriteLine(string.Format("Kolumna {0}", k + 1)); for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", dh, dmh, dh == dmh ? "OK" : "źle")); } Console.WriteLine(""); } for (int k = 0; k < h.Cols; k++) { for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Assert.AreEqual(dmh, dh); } } /* % Otrzymany hesjan: % Columns 1 through 6 % % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 % % Column 7 % % -0.639700008449225 % 1.279400016898449 % 1.279400016898449 % -1.523188311911530 % 3.046376623823059 % 3.046376623823059 % 3.480153950315843 */ }