Example #1
0
        public static void Bump(ITexture<double> d, DifferentialGeometry dgGeom, DifferentialGeometry dgShading, ref DifferentialGeometry dgBump)
        {
            DifferentialGeometry dgEval = new DifferentialGeometry (dgShading);

            double du = 0.5 * (Math.Abs (dgShading.dudx) + Math.Abs (dgShading.dudy));
            if (du == 0.0)
                du = 0.01;
            dgEval.p = dgShading.p + du * dgShading.dpdu;
            dgEval.u = dgShading.u + du;
            dgEval.n = (new Normal(dgShading.dpdu % dgShading.dpdv) + du * dgShading.dndu).Normalized;

            double uDisplace = d.Evaluate (dgEval);

            double dv = 0.5 * (Math.Abs (dgShading.dvdx) + Math.Abs (dgShading.dvdy));
            if (dv == 0.0)
                dv = 0.01;
            dgEval.p = dgShading.p + dv * dgShading.dpdv;
            dgEval.u = dgShading.u;
            dgEval.v = dgShading.v + dv;
            dgEval.n = (new Normal(dgShading.dpdu % dgShading.dpdv) + dv * dgShading.dndv).Normalized;

            double vDisplace = d.Evaluate (dgEval);
            double displace = d.Evaluate (dgShading);

            dgBump = new DifferentialGeometry (dgShading);
            dgBump.dpdu = dgShading.dpdu + (uDisplace - displace) / du * new Vector (dgShading.n) + displace * new Vector (dgShading.dndu);
            dgBump.dpdv = dgShading.dpdv + (vDisplace - displace) / dv * new Vector (dgShading.n) + displace * new Vector (dgShading.dndv);
            dgBump.n = new Normal((dgBump.dpdu % dgBump.dpdv).Normalized);

            if (dgShading.Shape.ReverseOrientation ^ dgShading.Shape.TransformSwapsHandedness)
                dgBump.n *= -1.0;

            dgBump.n = Util.FaceForward (dgBump.n, dgGeom.n);
        }
Example #2
0
 public BSDF(DifferentialGeometry dgs, Normal ngeom, double eta)
 {
     dgShading = new DifferentialGeometry (dgs);
     Eta = eta;
     ng = new Normal (ngeom);
     nn = new Normal (dgShading.n);
     sn = dgShading.dpdu.Normalized;
     tn = nn % sn;
     nBxDFs = 0;
 }
Example #3
0
 public override BSDF GetBsdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading)
 {
     BSDF b1 = m1.GetBsdf (dgGeom, dgShading);
     BSDF b2 = m2.GetBsdf (dgGeom, dgShading);
     Spectrum s1 = scale.Evaluate (dgShading).Clamp ();
     Spectrum s2 = (new Spectrum (1.0) - s1).Clamp ();
     int n1 = b1.NumComponents (), n2 = b2.NumComponents ();
     for (int i = 0; i < n1; ++i)
         b1.bxdfs[i] = new ScaledBxDF (b1.bxdfs[i], s1);
     for (int i = 0; i < n2; ++i)
         b1.Add (new ScaledBxDF (b2.bxdfs[i], s2));
     return b1;
 }
Example #4
0
 public override BSDF GetBsdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading)
 {
     DifferentialGeometry dgs = new DifferentialGeometry ();
     if (BumpMap != null)
         Bump (BumpMap, dgGeom, dgShading, ref dgs);
     else
         dgs = new DifferentialGeometry (dgShading);
     BSDF bsdf = new BSDF (dgs, dgGeom.n);
     Spectrum R = Kr.Evaluate (dgs).Clamp ();
     double e = Eta.Evaluate (dgs);
     if (!R.IsBlack)
         bsdf.Add (new SpecularReflection (R, new FresnelDielectric (1.0, e)));
     return bsdf;
 }
Example #5
0
 public DifferentialGeometry(DifferentialGeometry dg)
 {
     this.p = new Point (dg.p);
     this.dpdu = new Vector (dg.dpdu);
     this.dpdv = new Vector (dg.dpdv);
     this.dndu = new Normal (dg.dndu);
     this.dndv = new Normal (dg.dndv);
     this.n = new Normal (dg.n);
     this.u = dg.u;
     this.v = dg.v;
     this.dudx = dg.dudx;
     this.dvdx = dg.dvdx;
     this.dudy = dg.dudy;
     this.dvdy = dg.dvdy;
     this.Shape = dg.Shape;
 }
Example #6
0
 public Point Sample(Point p, LightSample lightSample, ref Normal Ns)
 {
     double temp = 0.0;
     int sn = AreaDistribution.SampleDiscrete (lightSample.uComponent, ref temp);
     Point pt = Shapes[sn].Sample (p, lightSample.uPos[0], lightSample.uPos[1], ref Ns);
     // Find closest intersection of ray with shapes in _ShapeSet_
     Ray r = new Ray (p, pt - p, 0.001, double.PositiveInfinity);
     double rayEps = 0.0, thit = 1.0;
     bool anyHit = false;
     DifferentialGeometry dg = new DifferentialGeometry ();
     foreach (IShape shape in Shapes)
         anyHit |= shape.Intersect (r, ref thit, ref rayEps, ref dg);
     if (anyHit)
         Ns = new Normal (dg.n);
     return r.Apply (thit);
 }
Example #7
0
        public override bool Intersect(Ray r, ref double tHit, ref double rayEpsilon, ref DifferentialGeometry dg)
        {
            // Transform _Ray_ to object space
            Ray ray = new Ray ();
            WorldToObject.Apply (r, ref ray);

            // Compute plane intersection for disk
            if (Math.Abs (ray.Direction.z) < 1E-07)
                return false;
            double thit = (Height - ray.Origin.z) / ray.Direction.z;
            if (thit < ray.MinT || thit > ray.MaxT)
                return false;

            // See if hit point is inside disk radii and $\phimax$
            Point phit = ray.Apply (thit);
            double dist2 = phit.x * phit.x + phit.y * phit.y;
            if (dist2 > Radius * Radius || dist2 < InnerRadius * InnerRadius)
                return false;

            // Test disk $\phi$ value against $\phimax$
            double phi = Math.Atan2 (phit.y, phit.x);
            if (phi < 0)
                phi += 2.0 * Util.Pi;
            if (phi > PhiMax)
                return false;

            // Find parametric representation of disk hit
            double u = phi / PhiMax;
            double v = 1.0 - ((Math.Sqrt (dist2) - InnerRadius) / (Radius - InnerRadius));
            Vector dpdu = new Vector (-PhiMax * phit.y, PhiMax * phit.x, 0.0);
            Vector dpdv = new Vector (-phit.x / (1 - v), -phit.y / (1 - v), 0.0);
            dpdu *= PhiMax * Util.InvTwoPi;
            dpdv *= (Radius - InnerRadius) / Radius;
            Normal dndu = new Normal (0, 0, 0), dndv = new Normal (0, 0, 0);

            // Initialize _DifferentialGeometry_ from parametric information
            dg = new DifferentialGeometry (ObjectToWorld.Apply (phit), ObjectToWorld.Apply (dpdu), ObjectToWorld.Apply (dpdv), ObjectToWorld.Apply (dndu), ObjectToWorld.Apply (dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 0.0005 * tHit;
            return true;
        }
Example #8
0
        public override BSDF GetBsdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading)
        {
            DifferentialGeometry dgs = new DifferentialGeometry ();
            if (BumpMap != null)
                Bump (BumpMap, dgGeom, dgShading, ref dgs);
            else
                dgs = new DifferentialGeometry (dgShading);

            BSDF bsdf = new BSDF (dgs, dgGeom.n);
            Spectrum r = Kd.Evaluate (dgs).Clamp ();
            double sig = Util.Clamp (Sigma.Evaluate (dgs), 0.0, 90.0);
            if (sig == 0.0)
                bsdf.Add (new Lambertian (r));
            else
                bsdf.Add (new OrenNayar (r, sig));

            return bsdf;
        }
Example #9
0
 public virtual BSSRDF GetBssrdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading)
 {
     return null;
 }
Example #10
0
 public virtual void GetShadingGeometry(Transform objectToWorld, DifferentialGeometry dg, ref DifferentialGeometry dgShading)
 {
     dgShading = new DifferentialGeometry (dg);
 }
Example #11
0
 public abstract BSDF GetBsdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading);
Example #12
0
 public virtual bool Intersect(Ray ray, ref double tHit, ref double rayEpsilon, ref DifferentialGeometry dg)
 {
     return false;
 }
Example #13
0
 public override BSSRDF GetBssrdf(DifferentialGeometry dgGeom, DifferentialGeometry dgShading)
 {
     double e = Eta.Evaluate (dgShading);
     return new BSSRDF (Scale * SigmaA.Evaluate (dgShading), Scale * SigmaPrimeS.Evaluate (dgShading), e);
 }
Example #14
0
        public override bool IntersectP(Ray ray)
        {
            Point p1 = Mesh.Points[Vertices[0]];
            Point p2 = Mesh.Points[Vertices[1]];
            Point p3 = Mesh.Points[Vertices[2]];

            Vector e1 = p2 - p1;
            Vector e2 = p3 - p1;
            Vector s1 = ray.Direction % e2;

            double divisor = s1 ^ e1;
            if (divisor == 0.0)
                return false;
            double invDivisor = 1.0 / divisor;

            Vector d = ray.Origin - p1;
            double b1 = (d ^ s1) * invDivisor;
            if (b1 < 0.0 || b1 > 1.0)
                return false;

            Vector s2 = d % e1;
            double b2 = (ray.Direction ^ s2) * invDivisor;
            if (b2 < 0.0 || b1 + b2 > 1.0)
                return false;

            double t = (e2 ^ s2) * invDivisor;
            if (t < ray.MinT || t > ray.MaxT)
                return false;

            if (ray.Depth != -1)
            {
                Vector dpdu = new Vector (), dpdv = new Vector ();
                double[] uvs = new double[6];
                GetUVs (uvs);

                double du1 = uvs[0] - uvs[4];
                double du2 = uvs[2] - uvs[4];
                double dv1 = uvs[1] - uvs[5];
                double dv2 = uvs[3] - uvs[5];
                Vector dp1 = p1 - p3, dp2 = p2 - p3;
                double determinant = du1 * dv2 - dv1 * du2;
                if (determinant == 0.0)
                    Util.CoordinateSystem ((e2 % e1).Normalized, out dpdu, out dpdv);
                else
                {
                    double invdet = 1.0 / determinant;
                    dpdu = (dv2 * dp1 - dv1 * dp2) * invdet;
                    dpdv = (-du2 * dp1 - du1 * dp2) * invdet;
                }

                double b0 = 1 - b1 - b2;
                double tu = b0 * uvs[0] + b1 * uvs[2] + b2 * uvs[4];
                double tv = b0 * uvs[1] + b1 * uvs[3] + b2 * uvs[5];

                DifferentialGeometry dgLocal = new DifferentialGeometry (ray.Apply (t), dpdu, dpdv, new Normal (), new Normal (), tu, tv, this);
                if (Mesh.AlphaTexture != null && Mesh.AlphaTexture.Evaluate (dgLocal) == 0.0)
                    return false;
            }

            return true;
        }
Example #15
0
        public override void GetShadingGeometry(Transform objectToWorld, DifferentialGeometry dg, ref DifferentialGeometry dgShading)
        {
            if (Mesh.Normals == null && Mesh.Vectors == null)
            {
                dgShading = new DifferentialGeometry (dg);
                return;
            }
            // Initialize _Triangle_ shading geometry with _n_ and _s_
            // Compute barycentric coordinates for point
            double[] b = new double[3];

            // Initialize _A_ and _C_ matrices for barycentrics
            double[] uv = new double[6];
            GetUVs (uv);
            double[][] A = new double[][] { new double[] { uv[2] - uv[0], uv[4] - uv[0] }, new double[] { uv[3] - uv[1], uv[5] - uv[1] } };
            double[] C = new double[] { dg.u - uv[0], dg.v - uv[1] };
            if (!Util.SolveLinearSystem2x2 (A, C[0], C[1], out b[1], out b[2]))
            {
                // Handle degenerate parametric mapping
                b[0] = b[1] = b[2] = 1.0 / 3.0;
            } else
                b[0] = 1.0 - b[1] - b[2];

            // Use _n_ and _s_ to compute shading tangents for triangle, _ss_ and _ts_
            Normal ns;
            Vector ss, ts;
            if (Mesh.Normals != null)
                ns = objectToWorld.Apply (b[0] * Mesh.Normals[Vertices[0]] +
                    b[1] * Mesh.Normals[Vertices[1]] +
                    b[2] * Mesh.Normals[Vertices[2]]).Normalized;
            else
                ns = new Normal (dg.n);
            if (Mesh.Vectors != null)
                ss = objectToWorld.Apply (b[0] * Mesh.Vectors[Vertices[0]] +
                    b[1] * Mesh.Vectors[Vertices[1]] +
                    b[2] * Mesh.Vectors[Vertices[2]]).Normalized;
            else
                ss = dg.dpdu.Normalized;
            ts = ss % ns;
            if (ts.SquaredLength > 0.0)
            {
                ts = ts.Normalized;
                ss = ts % ns;
            } else
                Util.CoordinateSystem (new Vector (ns), out ss, out ts);
            Normal dndu, dndv;

            // Compute $\dndu$ and $\dndv$ for triangle shading geometry
            if (Mesh.Normals != null)
            {
                double[] uvs = new double[6];
                GetUVs (uvs);
                // Compute deltas for triangle partial derivatives of normal
                double du1 = uvs[0] - uvs[4];
                double du2 = uvs[2] - uvs[4];
                double dv1 = uvs[1] - uvs[5];
                double dv2 = uvs[3] - uvs[5];
                Normal dn1 = Mesh.Normals[Vertices[0]] - Mesh.Normals[Vertices[2]];
                Normal dn2 = Mesh.Normals[Vertices[1]] - Mesh.Normals[Vertices[2]];
                double determinant = du1 * dv2 - dv1 * du2;
                if (determinant == 0.0)
                {
                    dndu = new Normal (0, 0, 0);
                    dndv = new Normal (0, 0, 0);
                } else
                {
                    double invdet = 1.0 / determinant;
                    dndu = (dv2 * dn1 - dv1 * dn2) * invdet;
                    dndv = (-du2 * dn1 + du1 * dn2) * invdet;
                }
            } else
            {
                dndu = new Normal (0, 0, 0);
                dndv = new Normal (0, 0, 0);
            }
            dgShading = new DifferentialGeometry (dg.p, ss, ts, ObjectToWorld.Apply (dndu), ObjectToWorld.Apply (dndv), dg.u, dg.v, dg.Shape);
            dgShading.dudx = dg.dudx;
            dgShading.dvdx = dg.dvdx;
            dgShading.dudy = dg.dudy;
            dgShading.dvdy = dg.dvdy;
            dgShading.dpdx = new Vector (dg.dpdx);
            dgShading.dpdy = new Vector (dg.dpdy);
        }
Example #16
0
 public abstract BSDF GetBsdf(DifferentialGeometry dg, Transform objectoToWorld);
Example #17
0
 public abstract BSSRDF GetBssrdf(DifferentialGeometry dg, Transform objectToWorld);
Example #18
0
        public virtual double Pdf(Point p, Vector wi)
        {
            DifferentialGeometry dgLight = new DifferentialGeometry ();
            Ray ray = new Ray (p, wi, 1e-3);
            ray.Depth = - 1;
            double thit = 0.0, rayEpsilon = 0.0;

            if (!Intersect (ray, ref thit, ref rayEpsilon, ref dgLight))
                return 0.0;

            double pdf = Util.DistanceSquared (p, ray.Apply (thit)) / Util.AbsDot (dgLight.n, -wi) * Area;

            if (double.IsInfinity (pdf))
                pdf = 0.0;

            return pdf;
        }
Example #19
0
        public override Point Sample(Point p, double u1, double u2, ref Normal Ns)
        {
            // Compute coordinate system for sphere sampling
            Point Pcenter = ObjectToWorld.Apply (new Point ());
            Vector wc = (Pcenter - p).Normalized;
            Vector wcX, wcY;
            Util.CoordinateSystem (wc, out wcX, out wcY);

            // Sample uniformly on sphere if $\pt{}$ is inside it
            if (Util.DistanceSquared (p, Pcenter) - Radius * Radius < 0.0001)
                return Sample (u1, u2, ref Ns);

            // Sample sphere uniformly inside subtended cone
            double sinThetaMax2 = Radius * Radius / Util.DistanceSquared (p, Pcenter);
            double cosThetaMax = Math.Sqrt (Math.Max (0.0, 1.0 - sinThetaMax2));
            DifferentialGeometry dgSphere = new DifferentialGeometry ();
            double thit = 0.0, rayEpsilon = 0.0;
            Point ps;
            Ray r = new Ray (p, MonteCarlo.UniformSampleCone (u1, u2, cosThetaMax, wcX, wcY, wc), 0.001);
            if (!Intersect (r, ref thit, ref rayEpsilon, ref dgSphere))
                thit = ((Pcenter - p) ^ r.Direction.Normalized);
            ps = r.Apply (thit);
            Ns = new Normal ((ps - Pcenter).Normalized);
            if (ReverseOrientation)
                Ns *= -1.0;
            return ps;
        }
Example #20
0
 public BSDF(DifferentialGeometry dgs, Normal ngeom)
     : this(dgs, ngeom, 1.0)
 {
 }
Example #21
0
 public override BSSRDF GetBssrdf(DifferentialGeometry dg, Transform objectToWorld)
 {
     DifferentialGeometry dgs = new DifferentialGeometry ();
     Shape.GetShadingGeometry (objectToWorld, dg, ref dgs);
     return Material.GetBssrdf (dg, dgs);
 }
Example #22
0
        public override bool Intersect(Ray r, ref double tHit, ref double rayEpsilon, ref DifferentialGeometry dg)
        {
            double phi;
            Point phit;
            // Transform _Ray_ to object space
            Ray ray = new Ray ();
            WorldToObject.Apply (r, ref ray);

            // Compute quadratic sphere coefficients
            double A = ray.Direction.x * ray.Direction.x + ray.Direction.y * ray.Direction.y + ray.Direction.z * ray.Direction.z;
            double B = 2 * (ray.Direction.x * ray.Origin.x + ray.Direction.y * ray.Origin.y + ray.Direction.z * ray.Origin.z);
            double C = ray.Origin.x * ray.Origin.x + ray.Origin.y * ray.Origin.y + ray.Origin.z * ray.Origin.z - Radius * Radius;

            // Solve quadratic equation for _t_ values
            double t0 = 0.0, t1 = 0.0;
            if (!Util.Quadratic (A, B, C, ref t0, ref t1))
                return false;

            // Compute intersection distance along ray
            if (t0 > ray.MaxT || t1 < ray.MinT)
                return false;
            double thit = t0;
            if (t0 < ray.MinT)
            {
                thit = t1;
                if (thit > ray.MaxT)
                    return false;
            }

            // Compute sphere hit position and $\phi$
            phit = ray.Apply (thit);
            if (phit.x == 0.0 && phit.y == 0.0)
                phit.x = 1E-5 * Radius;
            phi = Math.Atan2 (phit.y, phit.x);
            if (phi < 0.0)
                phi += 2.0 * Util.Pi;

            // Test sphere intersection against clipping parameters
            if ((zMin > -Radius && phit.z < zMin) || (zMax < Radius && phit.z > zMax) || phi > PhiMax)
            {
                if (thit == t1)
                    return false;
                if (t1 > ray.MaxT)
                    return false;
                thit = t1;
                // Compute sphere hit position and $\phi$
                phit = ray.Apply (thit);
                if (phit.x == 0.0 && phit.y == 0.0)
                    phit.x = 1E-5f * Radius;
                phi = Math.Atan2 (phit.y, phit.x);
                if (phi < 0.0)
                    phi += 2.0 * Util.Pi;
                if ((zMin > -Radius && phit.z < zMin) || (zMax < Radius && phit.z > zMax) || phi > PhiMax)
                    return false;
            }

            // Find parametric representation of sphere hit
            double u = phi / PhiMax;
            double theta = Math.Acos (Util.Clamp (phit.z / Radius, -1.0, 1.0));
            double v = (theta - ThetaMin) / (ThetaMax - ThetaMin);

            // Compute sphere $\dpdu$ and $\dpdv$
            double zRadius = Math.Sqrt (phit.x * phit.x + phit.y * phit.y);
            double invzRadius = 1.0 / zRadius;
            double cosphi = phit.x * invzRadius;
            double sinphi = phit.y * invzRadius;
            Vector dpdu = new Vector (-PhiMax * phit.y, PhiMax * phit.x, 0);
            Vector dpdv = (ThetaMax - ThetaMin) * new Vector (phit.z * cosphi, phit.z * sinphi, -Radius * Math.Sin (theta));

            // Compute sphere $\dndu$ and $\dndv$
            Vector d2Pduu = -PhiMax * PhiMax * new Vector (phit.x, phit.y, 0);
            Vector d2Pduv = (ThetaMax - ThetaMin) * phit.z * PhiMax * new Vector (-sinphi, cosphi, 0.0);
            Vector d2Pdvv = -(ThetaMax - ThetaMin) * (ThetaMax - ThetaMin) * new Vector (phit.x, phit.y, phit.z);

            // Compute coefficients for fundamental forms
            double E = (dpdu ^ dpdu);
            double F = (dpdu ^ dpdv);
            double G = (dpdv ^ dpdv);
            Vector N = (dpdu % dpdv).Normalized;
            double e = (N ^ d2Pduu);
            double f = (N ^ d2Pduv);
            double g = (N ^ d2Pdvv);

            // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
            double invEGF2 = 1.0 / (E * G - F * F);
            Normal dndu = new Normal ((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv);
            Normal dndv = new Normal ((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv);

            // Initialize _DifferentialGeometry_ from parametric information
            dg = new DifferentialGeometry (ObjectToWorld.Apply (phit), ObjectToWorld.Apply (dpdu), ObjectToWorld.Apply (dpdv), ObjectToWorld.Apply (dndu), ObjectToWorld.Apply (dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 0.0005 * tHit;

            return true;
        }