Example #1
0
        public static KMeansClusteringSolution CreateKMeansSolution(IClusteringProblemData problemData, int k, int restarts)
        {
            var dataset = problemData.Dataset;
            IEnumerable <string> allowedInputVariables = problemData.AllowedInputVariables;
            IEnumerable <int>    rows = problemData.TrainingIndices;
            int info;

            double[,] centers;
            int[] xyc;
            double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
            if (inputMatrix.Cast <double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
            {
                throw new NotSupportedException("k-Means clustering does not support NaN or infinity values in the input dataset.");
            }

            alglib.kmeansgenerate(inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), k, restarts + 1, out info, out centers, out xyc);
            if (info != 1)
            {
                throw new ArgumentException("Error in calculation of k-Means clustering solution");
            }

            KMeansClusteringSolution solution = new KMeansClusteringSolution(new KMeansClusteringModel(centers, allowedInputVariables), (IClusteringProblemData)problemData.Clone());

            return(solution);
        }
 private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner)
     : base(original, cloner)
 {
 }
 private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner)
   : base(original, cloner) {
 }