Example #1
0
        public static void Smooth(List <SteerPoint> steerPoints)
        {
            // todo: Could add a pass to merge points within 25 meters or so.
            // Take (linear) middle between points, average speed, set 'maximum' runway ops on merged point
            // Maybe after smoothing works best

            for (int i = 1; i < steerPoints.Count() - 1; i++)
            {
                if (steerPoints[i] is PushbackPoint)
                {
                    continue;
                }

                SteerPoint previous = steerPoints[i - 1];
                SteerPoint current  = steerPoints[i];
                SteerPoint next     = steerPoints[i + 1];

                double incomingBearing = VortexMath.BearingRadians(previous, current);
                double outgoingBearing = VortexMath.BearingRadians(current, next);
                double turnAngle       = VortexMath.AbsTurnAngle(incomingBearing, outgoingBearing);

                if (!current.Protected && turnAngle < 2.5 * VortexMath.Deg2Rad && !(current is RunwayPoint))
                {
                    if (previous.Name == next.Name && previous.Speed == next.Speed)
                    {
                        steerPoints.RemoveAt(i);
                        i--;
                    }
                }
                else
                if (!current.Protected && turnAngle > VortexMath.PI025)             // 45 degrees
                {
                    double smoothingDistance = 0.050 * (turnAngle / VortexMath.PI); // 90 degrees = 0.5 PI / PI = 0.5 * 0.05 km = 25 meters
                    double currentLatitude   = current.Latitude;
                    double currentLongitude  = current.Longitude;
                    if (VortexMath.DistanceKM(previous.Latitude, previous.Longitude, currentLatitude, currentLongitude) > smoothingDistance)
                    {
                        // Shift the current point a bit back
                        VortexMath.PointFrom(currentLatitude, currentLongitude, incomingBearing + VortexMath.PI, smoothingDistance, ref current.Latitude, ref current.Longitude);
                        if (current.Speed > 14)
                        {
                            current.Speed /= 2;
                        }
                    }
                    else
                    {
                        // skip the current
                        steerPoints.RemoveAt(i);
                        i--;
                    }

                    double distanceToNext = VortexMath.DistanceKM(currentLatitude, currentLongitude, next.Latitude, next.Longitude);
                    if (distanceToNext > smoothingDistance)
                    {
                        // Insert an extra point
                        SteerPoint newPoint = next.Duplicate();
                        VortexMath.PointFrom(currentLatitude, currentLongitude, outgoingBearing, smoothingDistance, ref newPoint.Latitude, ref newPoint.Longitude);

                        // If room for additional speed up point, reduce acceleration on this point
                        if (distanceToNext > 2.5 * smoothingDistance)
                        {
                            newPoint.Speed = (newPoint.Speed * 2) / 3;
                        }

                        steerPoints.Insert(i + 1, newPoint);
                        i++;
                    }

                    if (distanceToNext > 2.5 * smoothingDistance)
                    {
                        // Insert an extra point
                        SteerPoint newPoint = next.Duplicate();
                        VortexMath.PointFrom(currentLatitude, currentLongitude, outgoingBearing, 2.5 * smoothingDistance, ref newPoint.Latitude, ref newPoint.Longitude);
                        steerPoints.Insert(i + 1, newPoint);
                        i++;
                    }
                }
            }
        }
Example #2
0
        private void button2_Click(object sender, EventArgs e)
        {
            string aircraftFolder             = Path.Combine(Settings.XPlaneLocation, "ClassicJetSimUtils", "WorldTraffic", "AircraftTypes");
            IEnumerable <string> baseAircraft = Directory.EnumerateFiles(aircraftFolder, "*_BASE.txt");

            rtbAircraft.Clear();
            rtbAircraft.AppendText($"Found {baseAircraft.Count()} 'base' aircraft.\n\n");

            WorldTrafficAircraftType currentType = WorldTrafficAircraftType.Fighter;

            Dictionary <WorldTrafficAircraftType, List <AircraftBase> > aircraft = new Dictionary <WorldTrafficAircraftType, List <AircraftBase> >();

            for (WorldTrafficAircraftType wat = WorldTrafficAircraftType.Fighter; wat < WorldTrafficAircraftType.Max; wat++)
            {
                aircraft[wat] = new List <AircraftBase>();
            }


            foreach (string basecraft in baseAircraft)
            {
                AircraftBase aircraftBase = null;
                string[]     lines        = File.ReadAllLines(basecraft);
                bool         startFound   = false;
                string       nameCache    = "";

                foreach (string line in lines)
                {
                    string[] tokens = line.ToLower().Split(new char[] { ' ', '\t' }, StringSplitOptions.RemoveEmptyEntries);
                    if (tokens.Length < 1)
                    {
                        continue;
                    }

                    if (!startFound)
                    {
                        if (tokens[0] != "start")
                        {
                            continue;
                        }
                        else
                        {
                            startFound = true;
                            continue;
                        }
                    }

                    if (tokens.Length < 2)
                    {
                        continue;
                    }

                    switch (tokens[0])
                    {
                    case "type":
                        currentType  = (WorldTrafficAircraftType)int.Parse(tokens[1]);
                        aircraftBase = new AircraftBase
                        {
                            Name = nameCache.ToUpper()
                        };
                        break;

                    case "name":
                        nameCache = tokens[1];
                        break;

                    case "wingspan":
                        aircraftBase.WingSpan = VortexMath.Parse(tokens[1]);
                        break;

                    case "takeoffdistatmtow":
                        aircraftBase.TakeOffDist = VortexMath.Parse(tokens[1]);
                        break;

                    case "landingdist":
                        aircraftBase.LandingDist = VortexMath.Parse(tokens[1]);
                        break;

                    case "minlandingdist":
                        aircraftBase.MinLandingDist = VortexMath.Parse(tokens[1]);
                        break;

                    default:
                        break;
                    }
                }

                aircraft[currentType].Add(aircraftBase);
            }

            for (WorldTrafficAircraftType wat = WorldTrafficAircraftType.Fighter; wat < WorldTrafficAircraftType.Max; wat++)
            {
                if (aircraft[wat].Count > 0)
                {
                    rtbAircraft.AppendText($"World Traffic Type {(int)wat} <{wat}> {aircraft[wat].Count} base aircraft\n");

                    var byCat     = aircraft[wat].GroupBy(ac => SpanToCat(ac.WingSpan));
                    var catCounts = byCat.ToDictionary(ca => ca.Key, ca => ca.ToList().Count);


                    double minLandingDist = aircraft[wat].Min(ac => ac.LandingDist);
                    double maxLandingDist = aircraft[wat].Max(ac => ac.LandingDist);

                    var    withMLD           = aircraft[wat].Where(ac => ac.MinLandingDist > 0);
                    double minMinLandingDist = withMLD.Count() > 0 ? withMLD.Min(ac => ac.MinLandingDist) : 0.0;
                    int    noMinLandingDist  = aircraft[wat].Count(ac => ac.MinLandingDist == 0);
                    double maxMinLandingDist = aircraft[wat].Max(ac => ac.MinLandingDist);

                    double minWingSpan = aircraft[wat].Min(ac => ac.WingSpan);
                    double maxWingSpan = aircraft[wat].Max(ac => ac.WingSpan);

                    double minTakeOff = aircraft[wat].Min(ac => ac.TakeOffDist);
                    double maxTakeOff = aircraft[wat].Max(ac => ac.TakeOffDist);

                    string Name = aircraft[wat].First(ac => ac.WingSpan == maxWingSpan).Name;
                    rtbAircraft.AppendText($" Required Gate/Taxiway Size:  <{SpanToCat(maxWingSpan)}>  ({Name} has wingspan {maxWingSpan,4:0.0})\n");

                    foreach (var group in byCat)
                    {
                        rtbAircraft.AppendText($" Number of cat {group.Key}           : {catCounts[group.Key],5} {string.Join(", ", group)}\n");
                    }

                    Name = aircraft[wat].First(ac => ac.TakeOffDist == minTakeOff).Name;
                    rtbAircraft.AppendText($" Shortest Takeoff possible : {minTakeOff,5} ({Name})\n");
                    Name = aircraft[wat].First(ac => ac.TakeOffDist == maxTakeOff).Name;
                    rtbAircraft.AppendText($" Max Takeoff required      : {maxTakeOff,5} ({Name})\n");

                    Name = aircraft[wat].First(ac => ac.LandingDist == minLandingDist).Name;
                    rtbAircraft.AppendText($" Shortest Landing Distance : {minLandingDist,5} ({Name})\n");
                    Name = aircraft[wat].First(ac => ac.LandingDist == maxLandingDist).Name;
                    rtbAircraft.AppendText($" Longest Landing Distance  : {maxLandingDist,5} ({Name})\n");

                    Name = aircraft[wat].First(ac => ac.MinLandingDist == minMinLandingDist).Name;
                    rtbAircraft.AppendText($" Shortest Min Ldg Dist.    : {minMinLandingDist,5} ({Name})\n");
                    Name = aircraft[wat].First(ac => ac.MinLandingDist == maxMinLandingDist).Name;
                    rtbAircraft.AppendText($" Longest Min Ldg Dist.     : {maxMinLandingDist,5} ({Name})\n");
                    rtbAircraft.AppendText($" Without Min Ldg Dist.     : {noMinLandingDist,5}\n");

                    //rtbAircraft.AppendText($"{wat,-10} {aircraft[wat].Count(),2} {minLandingDist,5} {maxLandingDist,5}  {minMinLandingDist,5}  {maxMinLandingDist,5} {minTakeOff,5} {maxTakeOff,5} {minWingSpan,4:0.0} <{SpanToCat(minWingSpan)}> {maxWingSpan,4:0.0} <{SpanToCat(maxWingSpan)}>\n");
                    rtbAircraft.AppendText("\n");
                }
            }


            //foreach (KeyValuePair<int, List<AircraftBase>> details in aircraft.OrderBy(ac => ac.Key))
            //{
            //    double averageWingSpan = details.Value.Average(a => a.WingSpan);
            //    double minWingSpan = details.Value.Min(a => a.WingSpan);
            //    double maxWingSpan = details.Value.Max(a => a.WingSpan);

            //    rtbAircraft.AppendText($"{details.Key} Wingspan: mn {minWingSpan:0.0} <{SpanToCat(minWingSpan)}> av {averageWingSpan:0.0} mx: {maxWingSpan:0.0} <{SpanToCat(maxWingSpan)}>\n");
            //}

            //foreach (KeyValuePair<int, List<AircraftBase>> details in aircraft.OrderBy(ac => ac.Key))
            //{
            //    double averageLength = details.Value.Average(a => a.TakeOffDist);
            //    double minLength = details.Value.Min(a => a.TakeOffDist);
            //    double maxLength = details.Value.Max(a => a.TakeOffDist);

            //    rtbAircraft.AppendText($"{details.Key} TakeOffDist: mn {minLength:0} av {averageLength:0} mx: {maxLength:0}\n");
            //}

            //foreach (KeyValuePair<int, List<AircraftBase>> details in aircraft.OrderBy(ac => ac.Key))
            //{
            //    double averageLength = details.Value.Average(a => a.LandingDist);
            //    double minLength = details.Value.Min(a => a.LandingDist);
            //    double maxLength = details.Value.Max(a => a.LandingDist);

            //    rtbAircraft.AppendText($"{details.Key} LandingDist: mn {minLength:0} av {averageLength:0} mx: {maxLength:0}\n");
            //}
        }
Example #3
0
        /// <summary>
        /// Extract the route that starts at TaxiNode 'startNode'
        /// </summary>
        /// <param name="edges">A list of all available edges</param>
        /// <param name="startNode">The first node of the route</param>
        /// <param name="size">The maximum size for which this route is valid</param>
        /// <returns>The route as a linked list of nodes with additional informationthat will be needed when writing the route to a file</returns>
        public static ResultRoute ExtractRoute(IEnumerable <TaxiEdge> edges, TaxiNode startNode, XPlaneAircraftCategory size)
        {
            ResultRoute extracted = new ResultRoute(size);

            extracted.Runway    = null;
            extracted.StartNode = startNode;
            ulong node1 = extracted.StartNode.Id;

            extracted.Distance = startNode.DistanceToTarget;

            TaxiNode pathNode;

            pathNode = startNode.NextNodeToTarget;

            TaxiEdge sneakEdge = null;

            if (pathNode != null)
            {
                sneakEdge = edges.SingleOrDefault(e => e.StartNode.Id == node1 && e.EndNode.Id == pathNode.Id);
            }

            // Set up the first link
            extracted.RouteStart = new LinkedNode()
            {
                Node = startNode.NextNodeToTarget,
                Next = null,
                Edge = sneakEdge
            };

            LinkedNode currentLink = extracted.RouteStart;

            // And follow the path...
            while (pathNode != null)
            {
                double   currentBearing = currentLink.Node.BearingToTarget;
                ulong    node2          = pathNode.Id;
                TaxiEdge edge           = edges.Single(e => e.StartNode.Id == node1 && e.EndNode.Id == node2);

                if (pathNode.NextNodeToTarget != null && pathNode.NextNodeToTarget.DistanceToTarget > 0)
                {
                    double nextBearing = pathNode.NextNodeToTarget.BearingToTarget;
                    double turn        = VortexMath.AbsTurnAngle(currentBearing, nextBearing);

                    // This filters out very sharp turns if an alternate exists in exchange for a longer route:
                    // todo: parameters. Now => if more than 120 degrees and alternate < 45 exists use alternate
                    if (turn > VortexMath.Deg120Rad)
                    {
                        IEnumerable <TaxiEdge> altEdges = edges.Where(e => e.StartNode.Id == pathNode.NextNodeToTarget.Id &&
                                                                      e.EndNode.Id != pathNode.NextNodeToTarget.NextNodeToTarget.Id &&
                                                                      e.EndNode.Id != pathNode.Id);

                        foreach (TaxiEdge te in altEdges)
                        {
                            if (te.EndNode.DistanceToTarget < double.MaxValue)
                            {
                                double newTurn = VortexMath.AbsTurnAngle(currentBearing, te.EndNode.BearingToTarget);
                                if (newTurn < VortexMath.Deg100Rad)
                                {
                                    // Fiddling with Dijkstra results like this may generate a loop in the route
                                    // So scan it before actually using the reroute
                                    if (!hasLoop(te.EndNode, pathNode))
                                    {
                                        pathNode.NextNodeToTarget.OverrideToTarget = te.EndNode;
                                        break;
                                    }
                                }
                            }
                        }
                    }
                    else if (turn > VortexMath.Deg005Rad)   // Any turn larger than 5 degrees: if going straight does not lead to more than 250m extra distance... go straight.
                    {
                        IEnumerable <TaxiEdge> altEdges = edges.Where(e => e.StartNode.Id == pathNode.NextNodeToTarget.Id &&
                                                                      e.EndNode.Id != pathNode.NextNodeToTarget.NextNodeToTarget.Id &&
                                                                      e.EndNode.Id != pathNode.Id);

                        foreach (TaxiEdge te in altEdges)
                        {
                            if (te.EndNode.DistanceToTarget < (pathNode.NextNodeToTarget.NextNodeToTarget.DistanceToTarget + 0.250))
                            {
                                double newTurn = VortexMath.AbsTurnAngle(currentBearing, te.EndNode.BearingToTarget);
                                if (newTurn < VortexMath.Deg005Rad)
                                {
                                    // Fiddling with Dijkstra results like this may generate a loop in the route
                                    // So scan it before actually using the reroute
                                    if (!hasLoop(te.EndNode, pathNode))
                                    {
                                        pathNode.NextNodeToTarget.OverrideToTarget = te.EndNode;
                                        break;
                                    }
                                }
                            }
                        }
                    }
                }

                TaxiNode nextNode = (pathNode.OverrideToTarget != null) ? pathNode.OverrideToTarget : pathNode.NextNodeToTarget;

                currentLink.Next = new LinkedNode()
                {
                    Node = nextNode,
                    Next = null,
                };
                node1 = node2;

                currentLink.Edge = edge;

                currentLink          = currentLink.Next;
                extracted.TargetNode = pathNode;

                pathNode.OverrideToTarget = null;
                pathNode = nextNode;
            }

            return(extracted);
        }
Example #4
0
        private IEnumerable <SteerPoint> BuildSteerPoints(Parking currentParking, ResultRoute route)
        {
            LinkedNode link        = route.RouteStart;
            TaxiNode   nodeToWrite = route.StartNode;
            EntryPoint entryPoint  = route.RunwayEntryPoint;

            List <SteerPoint> steerPoints = new List <SteerPoint>
            {
                new ParkingPoint(currentParking.Latitude, currentParking.Longitude, 3, $"{currentParking.Name}", currentParking.Bearing, false)
            };

            // Write Pushback node, allowing room for turn
            double addLat = 0;
            double addLon = 0;

            // See if we need to skip the first route node
            if (currentParking.AlternateAfterPushBack != null && currentParking.AlternateAfterPushBack == route.RouteStart.Node)
            {
                // Our pushback point is better than the first point of the route
                nodeToWrite = currentParking.AlternateAfterPushBack;
            }

            // insert one more point here where the plane is pushed a little bit away from the next point
            if (currentParking.LocationType == StartUpLocationType.Gate)
            {
                if (nodeToWrite != null)
                {
                    double nextPushBearing;

                    if (VortexMath.DistanceKM(nodeToWrite.Latitude, nodeToWrite.Longitude, currentParking.PushBackLatitude, currentParking.PushBackLongitude) > 0.010)
                    {
                        // Push target is a virtual node
                        nextPushBearing = VortexMath.BearingRadians(nodeToWrite.Latitude, nodeToWrite.Longitude, currentParking.PushBackLatitude, currentParking.PushBackLongitude);
                    }
                    else
                    {
                        // Push target is very close to the actual first node of the route
                        nextPushBearing = (nodeToWrite.BearingToTarget + VortexMath.PI) % VortexMath.PI2;
                    }

                    double turn    = VortexMath.TurnAngle(currentParking.Bearing + VortexMath.PI, nextPushBearing);
                    double turnAbs = Math.Abs(turn);
                    double factor  = ((turnAbs) / VortexMath.PI);               // 0...0.5.....1
                    factor = (factor * factor) + factor / 4;                    // 0...0.375...1.25
                    double distance = 0.040 * factor;                           // 0m...15m ...50m

                    if (turnAbs < VortexMath.Deg135Rad)
                    {
                        // Try to trun the aircraft to the bearing it will need to go in after pushback

                        // First point is on the pushback heading, but away from the actual target to allow the AC to turn
                        VortexMath.PointFrom(currentParking.PushBackLatitude, currentParking.PushBackLongitude, currentParking.Bearing, distance, ref addLat, ref addLon);
                        steerPoints.Add(new PushbackPoint(addLat, addLon, 2, $"{currentParking.Name}"));

                        // Second point is on the (extended) line of the first link of the actual route
                        VortexMath.PointFrom(currentParking.PushBackLatitude, currentParking.PushBackLongitude, nextPushBearing, distance, ref addLat, ref addLon);
                        steerPoints.Add(new PushbackPoint(addLat, addLon, 2, $"{link.Edge.LinkName}"));

                        // Third point is on the same line but a little bit extra backwards to get the nose in the intended heading
                        VortexMath.PointFrom(currentParking.PushBackLatitude, currentParking.PushBackLongitude, nextPushBearing, distance + 0.015, ref addLat, ref addLon);
                        steerPoints.Add(new SteerPoint(addLat, addLon, 8, $"{link.Edge.LinkName}", true));
                    }
                    else
                    {
                        // Let's just turn it to a 90 degree angle with the first edge

                        // First point is on the pushback heading, but away from the actual target to allow the AC to turn
                        VortexMath.PointFrom(currentParking.PushBackLatitude, currentParking.PushBackLongitude, currentParking.Bearing, distance, ref addLat, ref addLon);
                        steerPoints.Add(new PushbackPoint(addLat, addLon, 2, $"{currentParking.Name}"));

                        // Second point is on the (extended) line of the first link of the actual route, but much closer then for the full turn
                        VortexMath.PointFrom(currentParking.PushBackLatitude, currentParking.PushBackLongitude, nextPushBearing, distance / 2.0, ref addLat, ref addLon);
                        steerPoints.Add(new PushbackPoint(addLat, addLon, 2, $"{link.Edge.LinkName}"));

                        // Third point is on +/-90 degree angle from the first link
                        VortexMath.PointFrom(addLat, addLon, (turn > 0) ? nextPushBearing + VortexMath.PI05 : nextPushBearing - VortexMath.PI05, 0.015, ref addLat, ref addLon);
                        steerPoints.Add(new SteerPoint(addLat, addLon, 5, $"{link.Edge.LinkName}", true));

                        // Add a fourth point back on the intended line
                        steerPoints.Add(new SteerPoint(currentParking.PushBackLatitude, currentParking.PushBackLongitude, 8, $"{link.Edge.LinkName}"));
                    }
                }
            }
            else
            {
                // Tie down, hangar, misc: just add the 'pushback' point as first target, smoothing should take care of the rest
                steerPoints.Add(new SteerPoint(currentParking.PushBackLatitude, currentParking.PushBackLongitude, 8, $"{link.Edge.LinkName}"));
            }

            if (nodeToWrite != link.Node)
            {
                steerPoints.Add(new SteerPoint(nodeToWrite.Latitude, nodeToWrite.Longitude, 8, $"{link.Edge.LinkName}"));
            }

            while (link.Node != null)
            {
                bool   activeZone = false;
                string activeFor  = "";

                if (link.Edge.ActiveZone)
                {
                    activeZone = true;
                    activeFor  = link.Edge.ActiveForRunway(Runway.Designator);
                }
                else if (link.Next.Edge != null && link.Next.Edge.ActiveZone)
                {
                    activeZone = true;
                    activeFor  = link.Next.Edge.ActiveForRunway(Runway.Designator);
                }
                else if (link.Next.Edge == null)
                {
                    activeZone = true;
                    activeFor  = Runway.Designator;
                }

                if (activeZone)
                {
                    steerPoints.Add(new RunwayPoint(link.Node.Latitude, link.Node.Longitude, 15, $"{link.Edge.LinkName}", activeFor));
                }
                else
                {
                    steerPoints.Add(new SteerPoint(link.Node.Latitude, link.Node.Longitude, 15, $"{link.Edge.LinkName}"));
                }

                link = link.Next;
            }

            steerPoints.Add(new RunwayPoint(entryPoint.OnRunwayNode, 8, Runway.Designator, Runway.Designator));

            VortexMath.PointFrom(entryPoint.OnRunwayNode, Runway.Bearing, 0.022, ref addLat, ref addLon);
            steerPoints.Add(new RunwayPoint(addLat, addLon, 6, Runway.Designator, Runway.Designator));

            RouteProcessor.Smooth(steerPoints);
            RouteProcessor.ProcessRunwayOperations(steerPoints);

            if (MaxOutPoints < steerPoints.Count)
            {
                MaxOutPoints = steerPoints.Count;
            }

            return(steerPoints);
        }
Example #5
0
        private IEnumerable <SteerPoint> BuildSteerPoints(ResultRoute route, TaxiNode runwayExitNode)
        {
            List <SteerPoint> steerPoints = new List <SteerPoint>();

            // Route should start at the (displaced) threshold
            RunwayPoint threshold = new RunwayPoint(route.Runway.DisplacedNode, 55, $"{route.Runway.Designator} Threshold", route.RouteStart.Edge.ActiveForRunway(route.Runway.Designator))
            {
                OnRunway  = true,
                IsExiting = true
            };

            steerPoints.Add(threshold);

            foreach (TaxiNode node in route.Runway.RunwayNodes)
            {
                int speed = (node == runwayExitNode) ? 35 : 55;
                steerPoints.Add(new RunwayPoint(node.Latitude, node.Longitude, speed, $"{route.Runway.Designator}", route.RouteStart.Edge.ActiveForRunway(route.Runway.Designator)));

                if (node == runwayExitNode) // Key of the dictionary is the last node on the runway centerline for this route
                {
                    break;
                }
            }

            // This is the first node off the runway centerline
            steerPoints.Add(new RunwayPoint(route.StartNode, 30, route.RouteStart.Edge.LinkName, route.RouteStart.Edge.ActiveForRunway(route.Runway.Designator)));

            LinkedNode link = route.RouteStart;

            while (link.Node != null)
            {
                bool   activeZone = false;
                string activeFor  = "";

                if (link.Edge.ActiveZone)
                {
                    activeZone = true;
                    activeFor  = link.Edge.ActiveForRunway("");
                }
                else if (link.Next.Edge != null && link.Next.Edge.ActiveZone)
                {
                    activeZone = true;
                    activeFor  = link.Next.Edge.ActiveForRunway("");
                }

                if (activeZone)
                {
                    steerPoints.Add(new RunwayPoint(link.Node.Latitude, link.Node.Longitude, 15, $"{link.Edge.LinkName}", activeFor));
                }
                else
                {
                    steerPoints.Add(new SteerPoint(link.Node.Latitude, link.Node.Longitude, 15, $"{link.Edge.LinkName}"));
                }

                link = link.Next;
            }

            // remove last point if it takes us past the 'pushback point'
            if (steerPoints.Count > 1)
            {
                SteerPoint oneButLast    = steerPoints.ElementAt(steerPoints.Count - 2);
                SteerPoint last          = steerPoints.ElementAt(steerPoints.Count - 1);
                double     lastBearing   = VortexMath.BearingRadians(oneButLast, last);
                double     bearingToPush = VortexMath.BearingRadians(last.Latitude, last.Longitude, Parking.PushBackLatitude, Parking.PushBackLongitude);
                double     turnToPush    = VortexMath.AbsTurnAngle(lastBearing, bearingToPush);
                if (turnToPush > VortexMath.Deg100Rad)
                {
                    steerPoints.RemoveAt(steerPoints.Count - 1);
                }
            }

            // todo: how does this all work with freaky pushback points?
            // todo: tie downs

            steerPoints.Add(new SteerPoint(Parking.PushBackLatitude, Parking.PushBackLongitude, 5, Parking.Name));
            steerPoints.Add(new ParkingPoint(Parking.Latitude, Parking.Longitude, 5, Parking.Name, Parking.Bearing, true));

            //RouteProcessor.Smooth(steerPoints);
            RouteProcessor.ProcessRunwayOperations(steerPoints);

            if (MaxInPoints < steerPoints.Count)
            {
                MaxInPoints = steerPoints.Count;
            }

            return(steerPoints);
        }