/**
         * <p>
         * Checks to see if a matrix is orthogonal or isometric.
         * </p>
         *
         * @param Q The matrix being tested. Not modified.
         * @param tol Tolerance.
         * @return True if it passes the test.
         */
        public static bool isOrthogonal(DMatrixRMaj Q, double tol)
        {
            if (Q.numRows < Q.numCols)
            {
                throw new ArgumentException("The number of rows must be more than or equal to the number of columns");
            }

            DMatrixRMaj[] u = CommonOps_DDRM.columnsToVector(Q, null);

            for (int i = 0; i < u.Count(); i++)
            {
                DMatrixRMaj a = u[i];

                for (int j = i + 1; j < u.Count(); j++)
                {
                    double val = VectorVectorMult_DDRM.innerProd(a, u[j]);

                    if (!(Math.Abs(val) <= tol))
                    {
                        return(false);
                    }
                }
            }

            return(true);
        }
Example #2
0
        /**
         * <p>
         * Creates a randomly generated set of orthonormal vectors.  At most it can generate the same
         * number of vectors as the dimension of the vectors.
         * </p>
         *
         * <p>
         * This is done by creatingJava.Util.Random vectors then ensuring that they are orthogonal
         * to all the ones previously created with reflectors.
         * </p>
         *
         * <p>
         * NOTE: This employs a brute force O(N<sup>3</sup>) algorithm.
         * </p>
         *
         * @param dimen dimension of the space which the vectors will span.
         * @param numVectors How many vectors it should generate.
         * @param rand Used to createJava.Util.Random vectors.
         * @return Array of NJava.Util.Random orthogonal vectors of unit Count().
         */
        // is there a faster algorithm out there? This one is a bit sluggish
        public static DMatrixRMaj[] span(int dimen, int numVectors, Java.Util.Random rand)
        {
            if (dimen < numVectors)
            {
                throw new ArgumentException("The number of vectors must be less than or equal to the dimension");
            }

            DMatrixRMaj[] u = new DMatrixRMaj[numVectors];

            u[0] = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);
            NormOps_DDRM.normalizeF(u[0]);

            for (int i = 1; i < numVectors; i++)
            {
                //            System.out.println(" i = "+i);
                DMatrixRMaj a = new DMatrixRMaj(dimen, 1);
                DMatrixRMaj r = RandomMatrices_DDRM.rectangle(dimen, 1, -1, 1, rand);

                for (int j = 0; j < i; j++)
                {
                    // find a vector that is normal to vector j
                    // u[i] = (1/2)*(r + Q[j]*r)
                    a.setTo(r);
                    VectorVectorMult_DDRM.householder(-2.0, u[j], r, a);
                    CommonOps_DDRM.add(r, a, a);
                    CommonOps_DDRM.scale(0.5, a);

                    //                UtilEjml.print(a);

                    DMatrixRMaj t = a;
                    a = r;
                    r = t;

                    // normalize it so it doesn't get too small
                    double val = NormOps_DDRM.normF(r);
                    if (val == 0 || Double.IsNaN(val) || Double.IsInfinity(val))
                    {
                        throw new SystemException("Failed sanity check");
                    }
                    CommonOps_DDRM.divide(r, val);
                }

                u[i] = r;
            }

            return(u);
        }
Example #3
0
 public double dot(Matrix A, Matrix v)
 {
     return(VectorVectorMult_DDRM.innerProd((DMatrixRMaj)A, (DMatrixRMaj)v));
 }