/// <summary> /// Prints the objects that have probability distributions with entropy higher than the given threshold. /// </summary> /// <param name="entropy_threshold">entropy_threshold</param> /// <returns></returns> public string PrintObjectClassProbabilities(double entropy_threshold) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < I; i++) { double entropy = DawidSkene.Entropy(T, i); if (entropy < entropy_threshold) { continue; } string object_name = objects_names[i]; sb.Append(object_name + "\t"); for (int j = 0; j < J; j++) { string class_name = classes_names[j]; sb.Append("Pr[" + class_name + "]=" + T[i, j] + "\t"); } sb.AppendLine(); } return(sb.ToString()); }
/// <summary> /// Run Dawid-Skene on the data. /// </summary> /// <param name="data">The data.</param> /// <param name="fullData">The full data.</param> /// <param name="calculateAccuracy">Whether to calculate accuracy</param> /// <returns>A results instance</returns> public Results RunDawidSkene(IList<Datum> data, IList<Datum> fullData, bool calculateAccuracy) { // If you want to run Dawid-Skene code, download his code, integrate it into // the project, and change false to true below. Console.WriteLine("--- Dawid Skene ---"); PredictedLabel = new Dictionary<string, int?>(); Mapping = new DataMapping(data); var fullDataMapping = new DataMapping(fullData); var labelings = data.Select(d => new Labeling(d.WorkerId, d.TaskId, d.WorkerLabel.ToString(), d.GoldLabel.ToString())).ToList(); DawidSkene ds = new DawidSkene(labelings, null, null); // The labels may be in a different order from our data labeling - we need to create a map. int[] labelIndexMap = new int[Mapping.LabelCount]; var dwLabels = ds.classes.Keys.ToArray(); for (int i = 0; i < Mapping.LabelCount; i++) { labelIndexMap[i] = Array.IndexOf(dwLabels, (i + Mapping.LabelMin).ToString()); } GoldLabels = fullDataMapping.GetGoldLabelsPerTaskId(). ToDictionary(kvp => kvp.Key, kvp => kvp.Value == null ? (int?)null : (int?)labelIndexMap[kvp.Value.Value]); ds.Estimate(10); var inferredLabels = ds.GetObjectClassProbabilities().Select(r => new Discrete(r)).ToArray(); TrueLabel = inferredLabels.Select((lab, i) => new { key = Mapping.TaskIndexToId[i], val = lab }).ToDictionary(a => a.key, a => a.val); if (calculateAccuracy) { UpdateAccuracy(); } return this; }