Example #1
0
            private static Task <Tuple <long, TrainedNework_Simple> > TrainAsync(Tuple <string, EncogOCR_SketchData[]>[] sketches, long token, bool shouldGenerateGarbage, CancellationTokenSource cancel)
            {
                CancellationToken cancelToken = cancel.Token;

                return(Task.Run(() =>
                {
                    string[] outputMap = sketches.
                                         Select(o => o.Item1).
                                         ToArray();

                    int inputSize = sketches[0].Item2[0].NNInput.Length;

                    #region Training Data

                    List <double[]> inputs = new List <double[]>();
                    List <double[]> outputs = new List <double[]>();

                    int groupIndex = 0;
                    foreach (var group in sketches)
                    {
                        double[] output = Enumerable.Range(0, outputMap.Length).
                                          Select((o, i) => i == groupIndex ? 1d : 0d).
                                          ToArray();

                        foreach (var input in group.Item2)
                        {
                            inputs.Add(input.NNInput);
                            outputs.Add(output);
                        }

                        groupIndex++;
                    }

                    if (shouldGenerateGarbage)
                    {
                        GenerateGarbageData(sketches.SelectMany(o => o.Item2).ToArray(), outputMap.Length, inputs, outputs);
                    }

                    #endregion

                    //NOTE: If there is an exception, the network couldn't be trained
                    BasicNetwork network = null;
                    try
                    {
                        network = UtilityEncog.GetTrainedNetwork2(inputs.ToArray(), outputs.ToArray(), 20, 300, cancelToken).NetworkOrNull;
                    }
                    catch (Exception) { }

                    var returnProps = new TrainedNework_Simple()
                    {
                        InputSize = inputSize,
                        Outputs = outputMap,
                        Network = network,
                    };

                    return Tuple.Create(token, returnProps);
                }, cancelToken));
            }
Example #2
0
        public void NetworkChanged(TrainedNework_Simple network)
        {
            _network = new Network(network);

            // Detect input size change
            if (_networkInputs == null || _networkInputs.Size != network.InputSize)
            {
                _networkInputs = new NetworkInputs(network.InputSize);
            }

            // Detect output size change
            if (_networkOutputs == null || !_networkOutputs.IsSame(network.Outputs))
            {
                _networkOutputs = new NetworkOutputs(network.Outputs);

                BuildLegend(_networkOutputs.Names, _networkOutputs.Hues);
            }

            #region Dots

            if (_dots == null)
            {
                EnsureDotsCreated();
            }
            else
            {
                _dots.Distances_Input.Clear();
                _dots.Distances_Output.Clear();

                // Clear
                foreach (Dot dot in _dots.Dots)
                {
                    dot.NNInput  = null;
                    dot.NNOutput = null;
                }

                // Rebuild
                foreach (Dot dot in _dots.Dots)
                {
                    ReconstructDot(dot);
                }
            }

            #endregion
        }
Example #3
0
        private static SketchDots TestSamples(TrainedNework_Simple network, EncogOCR_SketchData[] inputSketches, double[] hues)
        {
            // Run a bunch of test images through the NN
            //NOTE: Only .NNInput and .NNOutput props are populated
            SketchSample[] sketches = TestSamples_InputOutput(network, inputSketches);

            // Build a visual with each sketch as a dot
            Visual3D visual = TestSamples_Draw(sketches, hues);

            // Calculate the forces between each sketch
            Tuple <int, int, double>[] distance_Input, distance_Output;
            TestSamples_Distance(out distance_Input, out distance_Output, sketches);

            return(new SketchDots()
            {
                Sketches = sketches,
                Visual = visual,
                Distances_Input = distance_Input,
                Distances_Output = distance_Output,
            });
        }
Example #4
0
        private static SketchSample[] TestSamples_InputOutput(TrainedNework_Simple network, EncogOCR_SketchData[] inputSketches)
        {
            List <SketchSample> retVal = new List <SketchSample>();

            int inputSize  = network.Network.InputCount;
            int outputSize = network.Network.OutputCount;

            // Inputs
            foreach (EncogOCR_SketchData input in inputSketches)
            {
                double[] output = new double[outputSize];
                network.Network.Compute(input.NNInput, output);

                retVal.Add(new SketchSample()
                {
                    NNInput = input.NNInput, NNOutput = output
                });
            }

            // Solid Colors
            for (int cntr = 0; cntr <= 16; cntr++)
            {
                double val = cntr / 16d;

                double[] input  = Enumerable.Range(0, inputSize).Select(o => val).ToArray();
                double[] output = new double[outputSize];

                network.Network.Compute(input, output);

                retVal.Add(new SketchSample()
                {
                    NNInput = input, NNOutput = output
                });
            }

            //TODO: Generate random brush stroke images
            //TODO: Generate random pixelated images

            return(retVal.ToArray());
        }
Example #5
0
        //TODO: If they are only adding a new training sketch, then add to existing instead of repositioning everything (but do reavaluate all outputs, because the network is different)
        public void VisualizeThis(TrainedNework_Simple network, IEnumerable <EncogOCR_SketchData> sketches)
        {
            panelLegend.Children.Clear();

            //_viewport.Children.RemoveAll()
            //_viewport.Children.Remove(_colorWheelVisual);
            if (_sketches != null)
            {
                _viewport.Children.Remove(_sketches.Visual);
            }

            _network = network;

            if (sketches == null)
            {
                _inputSketches = null;
            }
            else
            {
                _inputSketches = sketches.ToArray();
            }

            if (_network == null || _inputSketches == null || _inputSketches.Length == 0)
            {
                return;
            }

            _hues = GetHues(_network.Outputs.Length);

            // Make a 2D legend that shows color of each name
            BuildLegend(_network.Outputs, _hues);

            //_colorWheelVisual = GetColorWheel(_hues.Item1, _hues.Item2);
            //_viewport.Children.Add(_colorWheelVisual);

            _sketches = TestSamples(_network, _inputSketches, _hues);
            _viewport.Children.Add(_sketches.Visual);
        }
Example #6
0
        /// <summary>
        /// This clears everything except:
        ///     session names out of the combo box
        ///     pixels
        ///     pen size
        /// </summary>
        private void ClearEverything()
        {
            if (_visualizer != null)
            {
                _visualizer.Clear();
            }

            _currentSketch = null;
            grdGuessDetails.Children.Clear();
            grdGuessDetails.RowDefinitions.Clear();

            pnlPreviousDrawings.Items.Clear();
            _prevSketches.Clear();

            cboDrawingLabel.Items.Clear();

            canvasInk.Strokes.Clear();

            _network = null;

            RedrawSmallImage();
            RedrawPreviousImages(true);
        }
 public Network(TrainedNework_Simple network)
 {
     this.Net = network;
 }
        public void NetworkChanged(TrainedNework_Simple network)
        {
            _network = new Network(network);

            // Detect input size change
            if (_networkInputs == null || _networkInputs.Size != network.InputSize)
            {
                _networkInputs = new NetworkInputs(network.InputSize);
            }

            // Detect output size change
            if (_networkOutputs == null || !_networkOutputs.IsSame(network.Outputs))
            {
                _networkOutputs = new NetworkOutputs(network.Outputs);

                BuildLegend(_networkOutputs.Names, _networkOutputs.Hues);
            }

            #region Dots

            if (_dots == null)
            {
                EnsureDotsCreated();
            }
            else
            {
                _dots.Distances_Input.Clear();
                _dots.Distances_Output.Clear();

                // Clear
                foreach (Dot dot in _dots.Dots)
                {
                    dot.NNInput = null;
                    dot.NNOutput = null;
                }

                // Rebuild
                foreach (Dot dot in _dots.Dots)
                {
                    ReconstructDot(dot);
                }
            }

            #endregion
        }
        /// <summary>
        /// This clears everything except:
        ///     session names out of the combo box
        ///     pixels
        ///     pen size
        /// </summary>
        private void ClearEverything()
        {
            if (_visualizer != null)
            {
                _visualizer.Clear();
            }

            _currentSketch = null;
            grdGuessDetails.Children.Clear();
            grdGuessDetails.RowDefinitions.Clear();

            pnlPreviousDrawings.Items.Clear();
            _prevSketches.Clear();

            cboDrawingLabel.Items.Clear();

            canvasInk.Strokes.Clear();

            _network = null;

            RedrawSmallImage();
            RedrawPreviousImages(true);
        }
Example #10
0
            private static Task<Tuple<long, TrainedNework_Simple>> TrainAsync(Tuple<string, EncogOCR_SketchData[]>[] sketches, long token, bool shouldGenerateGarbage, CancellationTokenSource cancel)
            {
                CancellationToken cancelToken = cancel.Token;

                return Task.Run(() =>
                {
                    string[] outputMap = sketches.
                        Select(o => o.Item1).
                        ToArray();

                    int inputSize = sketches[0].Item2[0].NNInput.Length;

                    #region Training Data

                    List<double[]> inputs = new List<double[]>();
                    List<double[]> outputs = new List<double[]>();

                    int groupIndex = 0;
                    foreach (var group in sketches)
                    {
                        double[] output = Enumerable.Range(0, outputMap.Length).
                            Select((o, i) => i == groupIndex ? 1d : 0d).
                            ToArray();

                        foreach (var input in group.Item2)
                        {
                            inputs.Add(input.NNInput);
                            outputs.Add(output);
                        }

                        groupIndex++;
                    }

                    if (shouldGenerateGarbage)
                    {
                        GenerateGarbageData(sketches.SelectMany(o => o.Item2).ToArray(), outputMap.Length, inputs, outputs);
                    }

                    #endregion

                    //NOTE: If there is an exception, the network couldn't be trained
                    BasicNetwork network = null;
                    try
                    {
                        network = UtilityEncog.GetTrainedNetwork2(inputs.ToArray(), outputs.ToArray(), 20, 300, cancelToken).NetworkOrNull;
                    }
                    catch (Exception) { }

                    var returnProps = new TrainedNework_Simple()
                    {
                        InputSize = inputSize,
                        Outputs = outputMap,
                        Network = network,
                    };

                    return Tuple.Create(token, returnProps);
                }, cancelToken);
            }
Example #11
0
 public Network(TrainedNework_Simple network)
 {
     this.Net = network;
 }
        private static SketchSample[] TestSamples_InputOutput(TrainedNework_Simple network, EncogOCR_SketchData[] inputSketches)
        {
            List<SketchSample> retVal = new List<SketchSample>();

            int inputSize = network.Network.InputCount;
            int outputSize = network.Network.OutputCount;

            // Inputs
            foreach (EncogOCR_SketchData input in inputSketches)
            {
                double[] output = new double[outputSize];
                network.Network.Compute(input.NNInput, output);

                retVal.Add(new SketchSample() { NNInput = input.NNInput, NNOutput = output });
            }

            // Solid Colors
            for (int cntr = 0; cntr <= 16; cntr++)
            {
                double val = cntr / 16d;

                double[] input = Enumerable.Range(0, inputSize).Select(o => val).ToArray();
                double[] output = new double[outputSize];

                network.Network.Compute(input, output);

                retVal.Add(new SketchSample() { NNInput = input, NNOutput = output });
            }

            //TODO: Generate random brush stroke images
            //TODO: Generate random pixelated images

            return retVal.ToArray();
        }
        private static SketchDots TestSamples(TrainedNework_Simple network, EncogOCR_SketchData[] inputSketches, double[] hues)
        {
            // Run a bunch of test images through the NN
            //NOTE: Only .NNInput and .NNOutput props are populated
            SketchSample[] sketches = TestSamples_InputOutput(network, inputSketches);

            // Build a visual with each sketch as a dot
            Visual3D visual = TestSamples_Draw(sketches, hues);

            // Calculate the forces between each sketch
            Tuple<int, int, double>[] distance_Input, distance_Output;
            TestSamples_Distance(out distance_Input, out distance_Output, sketches);

            return new SketchDots()
            {
                Sketches = sketches,
                Visual = visual,
                Distances_Input = distance_Input,
                Distances_Output = distance_Output,
            };
        }
        //TODO: If they are only adding a new training sketch, then add to existing instead of repositioning everything (but do reavaluate all outputs, because the network is different)
        public void VisualizeThis(TrainedNework_Simple network, IEnumerable<EncogOCR_SketchData> sketches)
        {
            panelLegend.Children.Clear();

            //_viewport.Children.RemoveAll()
            //_viewport.Children.Remove(_colorWheelVisual);
            if (_sketches != null)
            {
                _viewport.Children.Remove(_sketches.Visual);
            }

            _network = network;

            if (sketches == null)
            {
                _inputSketches = null;
            }
            else
            {
                _inputSketches = sketches.ToArray();
            }

            if (_network == null || _inputSketches == null || _inputSketches.Length == 0)
            {
                return;
            }

            _hues = GetHues(_network.Outputs.Length);

            // Make a 2D legend that shows color of each name
            BuildLegend(_network.Outputs, _hues);

            //_colorWheelVisual = GetColorWheel(_hues.Item1, _hues.Item2);
            //_viewport.Children.Add(_colorWheelVisual);

            _sketches = TestSamples(_network, _inputSketches, _hues);
            _viewport.Children.Add(_sketches.Visual);
        }