public Signal() { pca = new PCA(); knn = new KNN(); svm = new SVM(); svmscale = new SVMScale(); }
public double buildSVMTestCorpus(string filename) { double total = 0, tp = 0; string trainDataPath = filename + "SimpleTrainSVM.txt"; if (File.Exists(trainDataPath)) { _test = ProblemHelper.ReadProblem(trainDataPath); _test = ProblemHelper.ScaleProblem(_test); svm_node[][] sn = _test.x; total = sn.Length; double[] lbls = _test.y; for (int i = 0; i < sn.Length; i++) { if (_test.y[i] == svm.Predict(sn[i])) { tp++; } } fileExistance = true; //ProblemHelper.WriteProblem(filename+"TestSVM.txt", _test); } else { SVMScale readyData = new SVMScale(); readyData.buildSVMCorpus(filename); readyData.scaleSVMData(filename); buildSVMTestCorpus(filename); } return((tp / total) * 100); }
public SVM() { fileExistance = false; predictionDictionary = new Dictionary <int, string> { { 1, "Neutral" }, { 2, "Up" }, { 3, "Down" }, { 4, "Left" }, { 5, "Right" } }; scale = new SVMScale(); svmnode = new svm_node[25]; int i = 0; for (; i < 25; i++) { svmnode[i] = new svm_node(); svmnode[i].index = i + 1; } }