Example #1
0
        /// <summary>
        /// Find groups of Extremal Regions that are organized as text blocks.
        /// </summary>
        /// <param name="image">The image where ER grouping is to be perform on</param>
        /// <param name="channels">Array of single channel images from which the regions were extracted</param>
        /// <param name="erstats">Vector of ER’s retrieved from the ERFilter algorithm from each channel</param>
        /// <param name="groupingTrainedFileName">The XML or YAML file with the classifier model (e.g. trained_classifier_erGrouping.xml)</param>
        /// <param name="minProbability">The minimum probability for accepting a group.</param>
        /// <param name="groupMethods">The grouping methods</param>
        /// <returns>The output of the algorithm that indicates the text regions</returns>
        public static System.Drawing.Rectangle[] ERGrouping(IInputArray image, IInputArrayOfArrays channels, VectorOfERStat[] erstats, GroupingMethod groupMethods = GroupingMethod.OrientationHoriz, String groupingTrainedFileName = null, float minProbability = 0.5f)
        {
            IntPtr[] erstatPtrs = new IntPtr[erstats.Length];

            for (int i = 0; i < erstatPtrs.Length; i++)
            {
                erstatPtrs[i] = erstats[i].Ptr;
            }

            using (VectorOfVectorOfPoint regionGroups = new VectorOfVectorOfPoint())
                using (VectorOfRect groupsBoxes = new VectorOfRect())
                    using (InputArray iaImage = image.GetInputArray())
                        using (InputArray iaChannels = channels.GetInputArray())
                            using (CvString s = (groupingTrainedFileName == null ? new CvString() : new CvString(groupingTrainedFileName)))
                            {
                                GCHandle erstatsHandle = GCHandle.Alloc(erstatPtrs, GCHandleType.Pinned);
                                TextInvoke.cveERGrouping(
                                    iaImage, iaChannels,
                                    erstatsHandle.AddrOfPinnedObject(), erstatPtrs.Length,
                                    regionGroups, groupsBoxes,
                                    groupMethods,
                                    s, minProbability);

                                erstatsHandle.Free();
                                return(groupsBoxes.ToArray());
                            }
        }
Example #2
0
 /// <summary>
 /// Release all the unmanaged memory associate with this ERFilter
 /// </summary>
 protected override void DisposeObject()
 {
     if (_ptr != IntPtr.Zero)
     {
         TextInvoke.cveERFilterRelease(ref _ptr, ref _sharedPtr);
     }
 }
Example #3
0
 /// <summary>
 /// Release all the unmanaged memory associate with this TextDetector
 /// </summary>
 protected override void DisposeObject()
 {
     if (_sharedPtr != IntPtr.Zero)
     {
         TextInvoke.cveTextDetectorCNNRelease(ref _sharedPtr);
         _ptr = IntPtr.Zero;
     }
 }
Example #4
0
 /// <summary>
 /// Create an Extremal Region Filter for the 1st stage classifier of N&amp;M algorithm
 /// </summary>
 /// <param name="classifierFileName">The file name of the classifier</param>
 /// <param name="thresholdDelta">Threshold step in subsequent thresholds when extracting the component tree.</param>
 /// <param name="minArea">The minimum area (% of image size) allowed for retreived ER’s.</param>
 /// <param name="maxArea">The maximum area (% of image size) allowed for retreived ER’s.</param>
 /// <param name="minProbability">The minimum probability P(er|character) allowed for retreived ER’s.</param>
 /// <param name="nonMaxSuppression">Whenever non-maximum suppression is done over the branch probabilities.</param>
 /// <param name="minProbabilityDiff">The minimum probability difference between local maxima and local minima ERs.</param>
 public ERFilterNM1(
     String classifierFileName,
     int thresholdDelta       = 1,
     float minArea            = 0.00025f,
     float maxArea            = 0.13f,
     float minProbability     = 0.4f,
     bool nonMaxSuppression   = true,
     float minProbabilityDiff = 0.1f)
 {
     using (CvString s = new CvString(classifierFileName))
         _ptr = TextInvoke.cveERFilterNM1Create(s, thresholdDelta, minArea, maxArea, minProbability, nonMaxSuppression, minProbabilityDiff, ref _sharedPtr);
 }
Example #5
0
 /// <summary>
 /// Creates an instance of the TextDetectorCNN class using the provided parameters.
 /// </summary>
 /// <param name="modelArchFilename">The relative or absolute path to the prototxt file describing the classifiers architecture.</param>
 /// <param name="modelWeightsFilename">The relative or absolute path to the file containing the pretrained weights of the model in caffe-binary form.</param>
 /// <param name="detectionSizes">A list of sizes for multi-scale detection. The values[(300,300),(700,500),(700,300),(700,700),(1600,1600)] are recommended to achieve the best quality.</param>
 public TextDetectorCNN(String modelArchFilename, String modelWeightsFilename, Size[] detectionSizes = null)
 {
     using (CvString csModelArchFilename = new CvString(modelArchFilename))
         using (CvString csModelWeightsFilename = new CvString(modelWeightsFilename))
         {
             if (detectionSizes == null)
             {
                 _ptr = TextInvoke.cveTextDetectorCNNCreate(csModelArchFilename, csModelWeightsFilename,
                                                            ref _sharedPtr);
             }
             else
             {
                 using (VectorOfSize vs = new VectorOfSize(detectionSizes))
                     _ptr = TextInvoke.cveTextDetectorCNNCreate2(csModelArchFilename, csModelWeightsFilename, vs,
                                                                 ref _sharedPtr);
             }
         }
 }
Example #6
0
 /// <summary>
 /// Find bounding boxes of text words given an input image.
 /// </summary>
 /// <param name="inputImage">An image expected to be a CV_U8C3 of any size</param>
 /// <returns>The text regions found.</returns>
 public TextRegion[] Detect(IInputArray inputImage)
 {
     using (InputArray iaImage = inputImage.GetInputArray())
         using (VectorOfRect vr = new VectorOfRect())
             using (VectorOfFloat vf = new VectorOfFloat())
             {
                 TextInvoke.cveTextDetectorCNNDetect(_ptr, iaImage, vr, vf);
                 Rectangle[]  bboxes     = vr.ToArray();
                 float[]      confidents = vf.ToArray();
                 TextRegion[] regions    = new TextRegion[bboxes.Length];
                 for (int i = 0; i < regions.Length; i++)
                 {
                     TextRegion tr = new TextRegion();
                     tr.BBox      = bboxes[i];
                     tr.Confident = confidents[i];
                     regions[i]   = tr;
                 }
                 return(regions);
             }
 }
Example #7
0
 /// <summary>
 /// Takes image on input and returns the selected regions in a vector of ERStat only distinctive ERs which correspond to characters are selected by a sequential classifier
 /// </summary>
 /// <param name="image">Sinle channel image CV_8UC1</param>
 /// <param name="regions">Output for the 1st stage and Input/Output for the 2nd. The selected Extremal Regions are stored here.</param>
 public void Run(IInputArray image, VectorOfERStat regions)
 {
     using (InputArray iaImage = image.GetInputArray())
         TextInvoke.cveERFilterRun(_ptr, iaImage, regions);
 }
Example #8
0
 /// <summary>
 /// Create an Extremal Region Filter for the 2nd stage classifier of N&amp;M algorithm
 /// </summary>
 /// <param name="classifierFileName">The file name of the classifier</param>
 /// <param name="minProbability">The minimum probability P(er|character) allowed for retreived ER’s.</param>
 public ERFilterNM2(String classifierFileName, float minProbability = 0.3f)
 {
     using (CvString s = new CvString(classifierFileName))
         _ptr = TextInvoke.cveERFilterNM2Create(s, minProbability, ref _sharedPtr);
 }