/// <summary>
        /// Calculates the position
        /// </summary>
        /// <param name="BlindNode">The BlindNode to be positioned</param>
        /// <param name="filterMethod">The filter to use on the RSS values</param>
        /// <param name="RangingMethod">The ranging method</param>
        /// <param name="multihop">use multihop or not</param>
        /// <returns>The position of the blind node</returns>
        public static Point CalculatePosition(Node BlindNode, Node.FilterMethod filterMethod, Node.RangingMethod rangingMethod, bool multihop)
        {
            Point position = new Point();
            List<AnchorNode> AllAnchors = new List<AnchorNode>();
            double[][] y = new double[BlindNode.Anchors.Count-1][];
            double[][] x = new double[BlindNode.Anchors.Count-1][];

            foreach (AnchorNode an in BlindNode.Anchors)
            {
                an.fRSS = filterMethod(an.RSS);
                an.range = rangingMethod(an.fRSS);
            }

            if (!multihop)
            {
                if (BlindNode.Anchors.Count >= 3)
                {
                    for (int i = 1; i < BlindNode.Anchors.Count; i++)
                    {
                        y[i - 1] = new double[] { Math.Pow(BlindNode.Anchors[i].posx, 2) - Math.Pow(BlindNode.Anchors[0].posx, 2) + Math.Pow(BlindNode.Anchors[i].posy, 2) - Math.Pow(BlindNode.Anchors[0].posy, 2) - Math.Pow(BlindNode.Anchors[i].range, 2) + Math.Pow(BlindNode.Anchors[0].range, 2) };
                        x[i - 1] = new double[] { BlindNode.Anchors[i].posx - BlindNode.Anchors[0].posx, BlindNode.Anchors[i].posy - BlindNode.Anchors[0].posy };
                    }
                }
                else
                    position = null;

            }
            else
            {
                foreach (AnchorNode an in BlindNode.Anchors)
                    AllAnchors.Add(an);
                foreach (AnchorNode van in BlindNode.VirtualAnchors)
                    AllAnchors.Add(van);

                for (int i = 1; i < AllAnchors.Count; i++)
                {
                    if (AllAnchors[i].posx == AllAnchors[0].posx)
                        AllAnchors[i].posx += 0.1;
                    if (AllAnchors[i].posy == AllAnchors[0].posy)
                        AllAnchors[i].posy += 0.1;
                    y[i - 1] = new double[] { Math.Pow(AllAnchors[i].posx, 2) - Math.Pow(AllAnchors[0].posx, 2) + Math.Pow(AllAnchors[i].posy, 2) - Math.Pow(AllAnchors[0].posy, 2) - Math.Pow(AllAnchors[i].range, 2) + Math.Pow(AllAnchors[0].range, 2) };
                    x[i - 1] = new double[] { AllAnchors[i].posx - AllAnchors[0].posx, AllAnchors[i].posy - AllAnchors[0].posy };
                }
            }
            GeneralMatrix Y = new GeneralMatrix(y);
            GeneralMatrix X = new GeneralMatrix(x);
            GeneralMatrix XT = X.Transpose();
            GeneralMatrix haakjes = XT.Multiply(X);
            GeneralMatrix inverted = haakjes.Inverse(); // 2 * 2
            GeneralMatrix XTY = XT.Multiply(Y);         // 2 * 1

            GeneralMatrix sol = inverted.Multiply(XTY);
            GeneralMatrix SOL2 = sol.Multiply(0.5);
            position.x = SOL2.Array[0][0];
            position.y = SOL2.Array[1][0];
            return position;
        }
        /// <summary>QR Decomposition, computed by Householder reflections.</summary>
        /// <param name="A">   Rectangular matrix
        /// </param>
        /// <returns>     Structure to access R and the Householder vectors and compute Q.
        /// </returns>
        public QRDecomposition(GeneralMatrix A)
        {
            // Initialize.
            QR = A.ArrayCopy;
            m = A.RowDimension;
            n = A.ColumnDimension;
            Rdiag = new double[n];

            // Main loop.
            for (int k = 0; k < n; k++)
            {
                // Compute 2-norm of k-th column without under/overflow.
                double nrm = 0;
                for (int i = k; i < m; i++)
                {
                    nrm = Maths.Hypot(nrm, QR[i][k]);
                }

                if (nrm != 0.0)
                {
                    // Form k-th Householder vector.
                    if (QR[k][k] < 0)
                    {
                        nrm = - nrm;
                    }
                    for (int i = k; i < m; i++)
                    {
                        QR[i][k] /= nrm;
                    }
                    QR[k][k] += 1.0;

                    // Apply transformation to remaining columns.
                    for (int j = k + 1; j < n; j++)
                    {
                        double s = 0.0;
                        for (int i = k; i < m; i++)
                        {
                            s += QR[i][k] * QR[i][j];
                        }
                        s = (- s) / QR[k][k];
                        for (int i = k; i < m; i++)
                        {
                            QR[i][j] += s * QR[i][k];
                        }
                    }
                }
                Rdiag[k] = - nrm;
            }
        }
 /// <summary>Cholesky algorithm for symmetric and positive definite matrix.</summary>
 /// <param name="Arg">  Square, symmetric matrix.
 /// </param>
 /// <returns>     Structure to access L and isspd flag.
 /// </returns>
 public CholeskyDecomposition(GeneralMatrix Arg)
 {
     // Initialize.
     double[][] A = Arg.Array;
     n = Arg.RowDimension;
     L = new double[n][];
     for (int i = 0; i < n; i++)
     {
         L[i] = new double[n];
     }
     isspd = (Arg.ColumnDimension == n);
     // Main loop.
     for (int j = 0; j < n; j++)
     {
         double[] Lrowj = L[j];
         double d = 0.0;
         for (int k = 0; k < j; k++)
         {
             double[] Lrowk = L[k];
             double s = 0.0;
             for (int i = 0; i < k; i++)
             {
                 s += Lrowk[i] * Lrowj[i];
             }
             Lrowj[k] = s = (A[j][k] - s) / L[k][k];
             d = d + s * s;
             isspd = isspd & (A[k][j] == A[j][k]);
         }
         d = A[j][j] - d;
         isspd = isspd & (d > 0.0);
         L[j][j] = System.Math.Sqrt(System.Math.Max(d, 0.0));
         for (int k = j + 1; k < n; k++)
         {
             L[j][k] = 0.0;
         }
     }
 }
        /// <summary>Check for symmetry, then construct the eigenvalue decomposition</summary>
        /// <param name="Arg">   Square matrix
        /// </param>
        /// <returns>     Structure to access D and V.
        /// </returns>
        public EigenvalueDecomposition(GeneralMatrix Arg)
        {
            double[][] A = Arg.Array;
            n = Arg.ColumnDimension;
            V = new double[n][];
            for (int i = 0; i < n; i++)
            {
                V[i] = new double[n];
            }
            d = new double[n];
            e = new double[n];

            issymmetric = true;
            for (int j = 0; (j < n) & issymmetric; j++)
            {
                for (int i = 0; (i < n) & issymmetric; i++)
                {
                    issymmetric = (A[i][j] == A[j][i]);
                }
            }

            if (issymmetric)
            {
                for (int i = 0; i < n; i++)
                {
                    for (int j = 0; j < n; j++)
                    {
                        V[i][j] = A[i][j];
                    }
                }

                // Tridiagonalize.
                tred2();

                // Diagonalize.
                tql2();
            }
            else
            {
                H = new double[n][];
                for (int i2 = 0; i2 < n; i2++)
                {
                    H[i2] = new double[n];
                }
                ort = new double[n];

                for (int j = 0; j < n; j++)
                {
                    for (int i = 0; i < n; i++)
                    {
                        H[i][j] = A[i][j];
                    }
                }

                // Reduce to Hessenberg form.
                orthes();

                // Reduce Hessenberg to real Schur form.
                hqr2();
            }
        }
        /// <summary>Solve A*X = B</summary>
        /// <param name="B">  A Matrix with as many rows as A and any number of columns.
        /// </param>
        /// <returns>     X so that L*U*X = B(piv,:)
        /// </returns>
        /// <exception cref="System.ArgumentException"> Matrix row dimensions must agree.
        /// </exception>
        /// <exception cref="System.SystemException"> Matrix is singular.
        /// </exception>
        public virtual GeneralMatrix Solve(GeneralMatrix B)
        {
            if (B.RowDimension != m)
            {
                throw new System.ArgumentException("Matrix row dimensions must agree.");
            }
            if (!this.IsNonSingular)
            {
                throw new System.SystemException("Matrix is singular.");
            }

            // Copy right hand side with pivoting
            int nx = B.ColumnDimension;
            GeneralMatrix Xmat = B.GetMatrix(piv, 0, nx - 1);
            double[][] X = Xmat.Array;

            // Solve L*Y = B(piv,:)
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            // Solve U*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= LU[k][k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * LU[i][k];
                    }
                }
            }
            return Xmat;
        }
Example #6
0
 /// <summary>Solve X*A = B, which is also A'*X' = B'</summary>
 /// <param name="B">   right hand side
 /// </param>
 /// <returns>     solution if A is square, least squares solution otherwise.
 /// </returns>
 public virtual GeneralMatrix SolveTranspose(GeneralMatrix B)
 {
     return(Transpose().Solve(B.Transpose()));
 }
 /// <summary>Set a submatrix.</summary>
 /// <param name="r">   Array of row indices.
 /// </param>
 /// <param name="c">   Array of column indices.
 /// </param>
 /// <param name="X">   A(r(:),c(:))
 /// </param>
 /// <exception cref="System.IndexOutOfRangeException">  Submatrix indices
 /// </exception>
 public virtual void SetMatrix(int[] r, int[] c, GeneralMatrix X)
 {
     try
     {
         for (int i = 0; i < r.Length; i++)
         {
             for (int j = 0; j < c.Length; j++)
             {
                 A[r[i]][c[j]] = X.GetElement(i, j);
             }
         }
     }
     catch (System.IndexOutOfRangeException e)
     {
         throw new System.IndexOutOfRangeException("Submatrix indices", e);
     }
 }
 /// <summary>Linear algebraic matrix multiplication, A * B</summary>
 /// <param name="B">   another matrix
 /// </param>
 /// <returns>     Matrix product, A * B
 /// </returns>
 /// <exception cref="System.ArgumentException">  Matrix inner dimensions must agree.
 /// </exception>
 public virtual GeneralMatrix Multiply(GeneralMatrix B)
 {
     if (B.m != n)
     {
         throw new System.ArgumentException("GeneralMatrix inner dimensions must agree.");
     }
     GeneralMatrix X = new GeneralMatrix(m, B.n);
     double[][] C = X.Array;
     double[] Bcolj = new double[n];
     for (int j = 0; j < B.n; j++)
     {
         for (int k = 0; k < n; k++)
         {
             Bcolj[k] = B.A[k][j];
         }
         for (int i = 0; i < m; i++)
         {
             double[] Arowi = A[i];
             double s = 0;
             for (int k = 0; k < n; k++)
             {
                 s += Arowi[k] * Bcolj[k];
             }
             C[i][j] = s;
         }
     }
     return X;
 }
 /// <summary>Get a submatrix.</summary>
 /// <param name="r">   Array of row indices.
 /// </param>
 /// <param name="j0">  Initial column index
 /// </param>
 /// <param name="j1">  Final column index
 /// </param>
 /// <returns>     A(r(:),j0:j1)
 /// </returns>
 /// <exception cref="System.IndexOutOfRangeException">   Submatrix indices
 /// </exception>
 public virtual GeneralMatrix GetMatrix(int[] r, int j0, int j1)
 {
     GeneralMatrix X = new GeneralMatrix(r.Length, j1 - j0 + 1);
     double[][] B = X.Array;
     try
     {
         for (int i = 0; i < r.Length; i++)
         {
             for (int j = j0; j <= j1; j++)
             {
                 B[i][j - j0] = A[r[i]][j];
             }
         }
     }
     catch (System.IndexOutOfRangeException e)
     {
         throw new System.IndexOutOfRangeException("Submatrix indices", e);
     }
     return X;
 }
 /// <summary>Element-by-element right division in place, A = A./B</summary>
 /// <param name="B">   another matrix
 /// </param>
 /// <returns>     A./B
 /// </returns>
 public virtual GeneralMatrix ArrayRightDivideEquals(GeneralMatrix B)
 {
     CheckMatrixDimensions(B);
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             A[i][j] = A[i][j] / B.A[i][j];
         }
     }
     return this;
 }
 /// <summary>Solve A*X = B</summary>
 /// <param name="B">   right hand side
 /// </param>
 /// <returns>     solution if A is square, least squares solution otherwise
 /// </returns>
 public virtual GeneralMatrix Solve(GeneralMatrix B)
 {
     return (m == n ? (new LUDecomposition(this)).Solve(B):(new QRDecomposition(this)).Solve(B));
 }
        /// <summary>Construct the singular value decomposition</summary>
        /// <param name="Arg">   Rectangular matrix
        /// </param>
        /// <returns>     Structure to access U, S and V.
        /// </returns>
        public SingularValueDecomposition(GeneralMatrix Arg)
        {
            // Derived from LINPACK code.
            // Initialize.
            double[][] A = Arg.ArrayCopy;
            m = Arg.RowDimension;
            n = Arg.ColumnDimension;
            int nu = System.Math.Min(m, n);
            s = new double[System.Math.Min(m + 1, n)];
            U = new double[m][];
            for (int i = 0; i < m; i++)
            {
                U[i] = new double[nu];
            }
            V = new double[n][];
            for (int i2 = 0; i2 < n; i2++)
            {
                V[i2] = new double[n];
            }
            double[] e = new double[n];
            double[] work = new double[m];
            bool wantu = true;
            bool wantv = true;

            // Reduce A to bidiagonal form, storing the diagonal elements
            // in s and the super-diagonal elements in e.

            int nct = System.Math.Min(m - 1, n);
            int nrt = System.Math.Max(0, System.Math.Min(n - 2, m));
            for (int k = 0; k < System.Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {

                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;
                    for (int i = k; i < m; i++)
                    {
                        s[k] = Maths.Hypot(s[k], A[i][k]);
                    }
                    if (s[k] != 0.0)
                    {
                        if (A[k][k] < 0.0)
                        {
                            s[k] = - s[k];
                        }
                        for (int i = k; i < m; i++)
                        {
                            A[i][k] /= s[k];
                        }
                        A[k][k] += 1.0;
                    }
                    s[k] = - s[k];
                }
                for (int j = k + 1; j < n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {

                        // Apply the transformation.

                        double t = 0;
                        for (int i = k; i < m; i++)
                        {
                            t += A[i][k] * A[i][j];
                        }
                        t = (- t) / A[k][k];
                        for (int i = k; i < m; i++)
                        {
                            A[i][j] += t * A[i][k];
                        }
                    }

                    // Place the k-th row of A into e for the
                    // subsequent calculation of the row transformation.

                    e[j] = A[k][j];
                }
                if (wantu & (k < nct))
                {

                    // Place the transformation in U for subsequent back
                    // multiplication.

                    for (int i = k; i < m; i++)
                    {
                        U[i][k] = A[i][k];
                    }
                }
                if (k < nrt)
                {

                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;
                    for (int i = k + 1; i < n; i++)
                    {
                        e[k] = Maths.Hypot(e[k], e[i]);
                    }
                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = - e[k];
                        }
                        for (int i = k + 1; i < n; i++)
                        {
                            e[i] /= e[k];
                        }
                        e[k + 1] += 1.0;
                    }
                    e[k] = - e[k];
                    if ((k + 1 < m) & (e[k] != 0.0))
                    {

                        // Apply the transformation.

                        for (int i = k + 1; i < m; i++)
                        {
                            work[i] = 0.0;
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            for (int i = k + 1; i < m; i++)
                            {
                                work[i] += e[j] * A[i][j];
                            }
                        }
                        for (int j = k + 1; j < n; j++)
                        {
                            double t = (- e[j]) / e[k + 1];
                            for (int i = k + 1; i < m; i++)
                            {
                                A[i][j] += t * work[i];
                            }
                        }
                    }
                    if (wantv)
                    {

                        // Place the transformation in V for subsequent
                        // back multiplication.

                        for (int i = k + 1; i < n; i++)
                        {
                            V[i][k] = e[i];
                        }
                    }
                }
            }

            // Set up the final bidiagonal matrix or order p.

            int p = System.Math.Min(n, m + 1);
            if (nct < n)
            {
                s[nct] = A[nct][nct];
            }
            if (m < p)
            {
                s[p - 1] = 0.0;
            }
            if (nrt + 1 < p)
            {
                e[nrt] = A[nrt][p - 1];
            }
            e[p - 1] = 0.0;

            // If required, generate U.

            if (wantu)
            {
                for (int j = nct; j < nu; j++)
                {
                    for (int i = 0; i < m; i++)
                    {
                        U[i][j] = 0.0;
                    }
                    U[j][j] = 1.0;
                }
                for (int k = nct - 1; k >= 0; k--)
                {
                    if (s[k] != 0.0)
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k; i < m; i++)
                            {
                                t += U[i][k] * U[i][j];
                            }
                            t = (- t) / U[k][k];
                            for (int i = k; i < m; i++)
                            {
                                U[i][j] += t * U[i][k];
                            }
                        }
                        for (int i = k; i < m; i++)
                        {
                            U[i][k] = - U[i][k];
                        }
                        U[k][k] = 1.0 + U[k][k];
                        for (int i = 0; i < k - 1; i++)
                        {
                            U[i][k] = 0.0;
                        }
                    }
                    else
                    {
                        for (int i = 0; i < m; i++)
                        {
                            U[i][k] = 0.0;
                        }
                        U[k][k] = 1.0;
                    }
                }
            }

            // If required, generate V.

            if (wantv)
            {
                for (int k = n - 1; k >= 0; k--)
                {
                    if ((k < nrt) & (e[k] != 0.0))
                    {
                        for (int j = k + 1; j < nu; j++)
                        {
                            double t = 0;
                            for (int i = k + 1; i < n; i++)
                            {
                                t += V[i][k] * V[i][j];
                            }
                            t = (- t) / V[k + 1][k];
                            for (int i = k + 1; i < n; i++)
                            {
                                V[i][j] += t * V[i][k];
                            }
                        }
                    }
                    for (int i = 0; i < n; i++)
                    {
                        V[i][k] = 0.0;
                    }
                    V[k][k] = 1.0;
                }
            }

            // Main iteration loop for the singular values.

            int pp = p - 1;
            int iter = 0;
            double eps = System.Math.Pow(2.0, - 52.0);
            while (p > 0)
            {
                int k, kase;

                // Here is where a test for too many iterations would go.

                // This section of the program inspects for
                // negligible elements in the s and e arrays.  On
                // completion the variables kase and k are set as follows.

                // kase = 1     if s(p) and e[k-1] are negligible and k<p
                // kase = 2     if s(k) is negligible and k<p
                // kase = 3     if e[k-1] is negligible, k<p, and
                //              s(k), ..., s(p) are not negligible (qr step).
                // kase = 4     if e(p-1) is negligible (convergence).

                for (k = p - 2; k >= - 1; k--)
                {
                    if (k == - 1)
                    {
                        break;
                    }
                    if (System.Math.Abs(e[k]) <= eps * (System.Math.Abs(s[k]) + System.Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }
                if (k == p - 2)
                {
                    kase = 4;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }
                        double t = (ks != p?System.Math.Abs(e[ks]):0.0) + (ks != k + 1?System.Math.Abs(e[ks - 1]):0.0);
                        if (System.Math.Abs(s[ks]) <= eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }
                    if (ks == k)
                    {
                        kase = 3;
                    }
                    else if (ks == p - 1)
                    {
                        kase = 1;
                    }
                    else
                    {
                        kase = 2;
                        k = ks;
                    }
                }
                k++;

                // Perform the task indicated by kase.

                switch (kase)
                {

                    // Deflate negligible s(p).
                    case 1:
                    {
                        double f = e[p - 2];
                        e[p - 2] = 0.0;
                        for (int j = p - 2; j >= k; j--)
                        {
                            double t = Maths.Hypot(s[j], f);
                            double cs = s[j] / t;
                            double sn = f / t;
                            s[j] = t;
                            if (j != k)
                            {
                                f = (- sn) * e[j - 1];
                                e[j - 1] = cs * e[j - 1];
                            }
                            if (wantv)
                            {
                                for (int i = 0; i < n; i++)
                                {
                                    t = cs * V[i][j] + sn * V[i][p - 1];
                                    V[i][p - 1] = (- sn) * V[i][j] + cs * V[i][p - 1];
                                    V[i][j] = t;
                                }
                            }
                        }
                    }
                    break;

                    // Split at negligible s(k).

                    case 2:
                    {
                        double f = e[k - 1];
                        e[k - 1] = 0.0;
                        for (int j = k; j < p; j++)
                        {
                            double t = Maths.Hypot(s[j], f);
                            double cs = s[j] / t;
                            double sn = f / t;
                            s[j] = t;
                            f = (- sn) * e[j];
                            e[j] = cs * e[j];
                            if (wantu)
                            {
                                for (int i = 0; i < m; i++)
                                {
                                    t = cs * U[i][j] + sn * U[i][k - 1];
                                    U[i][k - 1] = (- sn) * U[i][j] + cs * U[i][k - 1];
                                    U[i][j] = t;
                                }
                            }
                        }
                    }
                    break;

                    // Perform one qr step.

                    case 3:
                    {
                        // Calculate the shift.

                        double scale = System.Math.Max(System.Math.Max(System.Math.Max(System.Math.Max(System.Math.Abs(s[p - 1]), System.Math.Abs(s[p - 2])), System.Math.Abs(e[p - 2])), System.Math.Abs(s[k])), System.Math.Abs(e[k]));
                        double sp = s[p - 1] / scale;
                        double spm1 = s[p - 2] / scale;
                        double epm1 = e[p - 2] / scale;
                        double sk = s[k] / scale;
                        double ek = e[k] / scale;
                        double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
                        double c = (sp * epm1) * (sp * epm1);
                        double shift = 0.0;
                        if ((b != 0.0) | (c != 0.0))
                        {
                            shift = System.Math.Sqrt(b * b + c);
                            if (b < 0.0)
                            {
                                shift = - shift;
                            }
                            shift = c / (b + shift);
                        }
                        double f = (sk + sp) * (sk - sp) + shift;
                        double g = sk * ek;

                        // Chase zeros.

                        for (int j = k; j < p - 1; j++)
                        {
                            double t = Maths.Hypot(f, g);
                            double cs = f / t;
                            double sn = g / t;
                            if (j != k)
                            {
                                e[j - 1] = t;
                            }
                            f = cs * s[j] + sn * e[j];
                            e[j] = cs * e[j] - sn * s[j];
                            g = sn * s[j + 1];
                            s[j + 1] = cs * s[j + 1];
                            if (wantv)
                            {
                                for (int i = 0; i < n; i++)
                                {
                                    t = cs * V[i][j] + sn * V[i][j + 1];
                                    V[i][j + 1] = (- sn) * V[i][j] + cs * V[i][j + 1];
                                    V[i][j] = t;
                                }
                            }
                            t = Maths.Hypot(f, g);
                            cs = f / t;
                            sn = g / t;
                            s[j] = t;
                            f = cs * e[j] + sn * s[j + 1];
                            s[j + 1] = (- sn) * e[j] + cs * s[j + 1];
                            g = sn * e[j + 1];
                            e[j + 1] = cs * e[j + 1];
                            if (wantu && (j < m - 1))
                            {
                                for (int i = 0; i < m; i++)
                                {
                                    t = cs * U[i][j] + sn * U[i][j + 1];
                                    U[i][j + 1] = (- sn) * U[i][j] + cs * U[i][j + 1];
                                    U[i][j] = t;
                                }
                            }
                        }
                        e[p - 2] = f;
                        iter = iter + 1;
                    }
                    break;

                    // Convergence.

                    case 4:
                    {
                        // Make the singular values positive.

                        if (s[k] <= 0.0)
                        {
                            s[k] = (s[k] < 0.0?- s[k]:0.0);
                            if (wantv)
                            {
                                for (int i = 0; i <= pp; i++)
                                {
                                    V[i][k] = - V[i][k];
                                }
                            }
                        }

                        // Order the singular values.

                        while (k < pp)
                        {
                            if (s[k] >= s[k + 1])
                            {
                                break;
                            }
                            double t = s[k];
                            s[k] = s[k + 1];
                            s[k + 1] = t;
                            if (wantv && (k < n - 1))
                            {
                                for (int i = 0; i < n; i++)
                                {
                                    t = V[i][k + 1]; V[i][k + 1] = V[i][k]; V[i][k] = t;
                                }
                            }
                            if (wantu && (k < m - 1))
                            {
                                for (int i = 0; i < m; i++)
                                {
                                    t = U[i][k + 1]; U[i][k + 1] = U[i][k]; U[i][k] = t;
                                }
                            }
                            k++;
                        }
                        iter = 0;
                        p--;
                    }
                    break;
                }
            }
        }
        /// <summary>Solve A*X = B</summary>
        /// <param name="B">  A Matrix with as many rows as A and any number of columns.
        /// </param>
        /// <returns>     X so that L*L'*X = B
        /// </returns>
        /// <exception cref="System.ArgumentException">  Matrix row dimensions must agree.
        /// </exception>
        /// <exception cref="System.SystemException"> Matrix is not symmetric positive definite.
        /// </exception>
        public virtual GeneralMatrix Solve(GeneralMatrix B)
        {
            if (B.RowDimension != n)
            {
                throw new System.ArgumentException("Matrix row dimensions must agree.");
            }
            if (!isspd)
            {
                throw new System.SystemException("Matrix is not symmetric positive definite.");
            }

            // Copy right hand side.
            double[][] X = B.ArrayCopy;
            int nx = B.ColumnDimension;

            // Solve L*Y = B;
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * L[i][k];
                    }
                }
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= L[k][k];
                }
            }

            // Solve L'*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= L[k][k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * L[k][i];
                    }
                }
            }
            return new GeneralMatrix(X, n, nx);
        }
        /// <summary>Least squares solution of A*X = B</summary>
        /// <param name="B">   A Matrix with as many rows as A and any number of columns.
        /// </param>
        /// <returns>     X that minimizes the two norm of Q*R*X-B.
        /// </returns>
        /// <exception cref="System.ArgumentException"> Matrix row dimensions must agree.
        /// </exception>
        /// <exception cref="System.SystemException"> Matrix is rank deficient.
        /// </exception>
        public virtual GeneralMatrix Solve(GeneralMatrix B)
        {
            if (B.RowDimension != m)
            {
                throw new System.ArgumentException("GeneralMatrix row dimensions must agree.");
            }
            if (!this.FullRank)
            {
                throw new System.SystemException("Matrix is rank deficient.");
            }

            // Copy right hand side
            int nx = B.ColumnDimension;
            double[][] X = B.ArrayCopy;

            // Compute Y = transpose(Q)*B
            for (int k = 0; k < n; k++)
            {
                for (int j = 0; j < nx; j++)
                {
                    double s = 0.0;
                    for (int i = k; i < m; i++)
                    {
                        s += QR[i][k] * X[i][j];
                    }
                    s = (- s) / QR[k][k];
                    for (int i = k; i < m; i++)
                    {
                        X[i][j] += s * QR[i][k];
                    }
                }
            }
            // Solve R*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k][j] /= Rdiag[k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i][j] -= X[k][j] * QR[i][k];
                    }
                }
            }

            return (new GeneralMatrix(X, n, nx).GetMatrix(0, n - 1, 0, nx - 1));
        }
 /// <summary>Solve X*A = B, which is also A'*X' = B'</summary>
 /// <param name="B">   right hand side
 /// </param>
 /// <returns>     solution if A is square, least squares solution otherwise.
 /// </returns>
 public virtual GeneralMatrix SolveTranspose(GeneralMatrix B)
 {
     return Transpose().Solve(B.Transpose());
 }
 /// <summary>Element-by-element right division, C = A./B</summary>
 /// <param name="B">   another matrix
 /// </param>
 /// <returns>     A./B
 /// </returns>
 public virtual GeneralMatrix ArrayRightDivide(GeneralMatrix B)
 {
     CheckMatrixDimensions(B);
     GeneralMatrix X = new GeneralMatrix(m, n);
     double[][] C = X.Array;
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             C[i][j] = A[i][j] / B.A[i][j];
         }
     }
     return X;
 }
 /// <summary>A = A - B</summary>
 /// <param name="B">   another matrix
 /// </param>
 /// <returns>     A - B
 /// </returns>
 public virtual GeneralMatrix SubtractEquals(GeneralMatrix B)
 {
     CheckMatrixDimensions(B);
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             A[i][j] = A[i][j] - B.A[i][j];
         }
     }
     return this;
 }
 /// <summary>Get a submatrix.</summary>
 /// <param name="i0">  Initial row index
 /// </param>
 /// <param name="i1">  Final row index
 /// </param>
 /// <param name="c">   Array of column indices.
 /// </param>
 /// <returns>     A(i0:i1,c(:))
 /// </returns>
 /// <exception cref="System.IndexOutOfRangeException">   Submatrix indices
 /// </exception>
 public virtual GeneralMatrix GetMatrix(int i0, int i1, int[] c)
 {
     GeneralMatrix X = new GeneralMatrix(i1 - i0 + 1, c.Length);
     double[][] B = X.Array;
     try
     {
         for (int i = i0; i <= i1; i++)
         {
             for (int j = 0; j < c.Length; j++)
             {
                 B[i - i0][j] = A[i][c[j]];
             }
         }
     }
     catch (System.IndexOutOfRangeException e)
     {
         throw new System.IndexOutOfRangeException("Submatrix indices", e);
     }
     return X;
 }
 /// <summary>Matrix transpose.</summary>
 /// <returns>    A'
 /// </returns>
 public virtual GeneralMatrix Transpose()
 {
     GeneralMatrix X = new GeneralMatrix(n, m);
     double[][] C = X.Array;
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             C[j][i] = A[i][j];
         }
     }
     return X;
 }
 /// <summary>Multiply a matrix by a scalar, C = s*A</summary>
 /// <param name="s">   scalar
 /// </param>
 /// <returns>     s*A
 /// </returns>
 public virtual GeneralMatrix Multiply(double s)
 {
     GeneralMatrix X = new GeneralMatrix(m, n);
     double[][] C = X.Array;
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             C[i][j] = s * A[i][j];
         }
     }
     return X;
 }
 /// <summary>Unary minus</summary>
 /// <returns>    -A
 /// </returns>
 public virtual GeneralMatrix UnaryMinus()
 {
     GeneralMatrix X = new GeneralMatrix(m, n);
     double[][] C = X.Array;
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             C[i][j] = -A[i][j];
         }
     }
     return X;
 }
 /// <summary>Set a submatrix.</summary>
 /// <param name="i0">  Initial row index
 /// </param>
 /// <param name="i1">  Final row index
 /// </param>
 /// <param name="j0">  Initial column index
 /// </param>
 /// <param name="j1">  Final column index
 /// </param>
 /// <param name="X">   A(i0:i1,j0:j1)
 /// </param>
 /// <exception cref="System.IndexOutOfRangeException">  Submatrix indices
 /// </exception>
 public virtual void SetMatrix(int i0, int i1, int j0, int j1, GeneralMatrix X)
 {
     try
     {
         for (int i = i0; i <= i1; i++)
         {
             for (int j = j0; j <= j1; j++)
             {
                 A[i][j] = X.GetElement(i - i0, j - j0);
             }
         }
     }
     catch (System.IndexOutOfRangeException e)
     {
         throw new System.IndexOutOfRangeException("Submatrix indices", e);
     }
 }
 /// <summary>Check if size(A) == size(B) *</summary>
 private void CheckMatrixDimensions(GeneralMatrix B)
 {
     if (B.m != m || B.n != n)
     {
         throw new System.ArgumentException("GeneralMatrix dimensions must agree.");
     }
 }
Example #24
0
 /// <summary>Solve A*X = B</summary>
 /// <param name="B">   right hand side
 /// </param>
 /// <returns>     solution if A is square, least squares solution otherwise
 /// </returns>
 public virtual GeneralMatrix Solve(GeneralMatrix B)
 {
     return(m == n ? (new LUDecomposition(this)).Solve(B):(new QRDecomposition(this)).Solve(B));
 }
 /// <summary>Construct a matrix from a copy of a 2-D array.</summary>
 /// <param name="A">   Two-dimensional array of doubles.
 /// </param>
 /// <exception cref="System.ArgumentException">   All rows must have the same length
 /// </exception>
 public static GeneralMatrix Create(double[][] A)
 {
     int m = A.Length;
     int n = A[0].Length;
     GeneralMatrix X = new GeneralMatrix(m, n);
     double[][] C = X.Array;
     for (int i = 0; i < m; i++)
     {
         if (A[i].Length != n)
         {
             throw new System.ArgumentException("All rows must have the same length.");
         }
         for (int j = 0; j < n; j++)
         {
             C[i][j] = A[i][j];
         }
     }
     return X;
 }
        /// <summary>Check for symmetry, then construct the eigenvalue decomposition</summary>
        /// <param name="Arg">   Square matrix
        /// </param>
        /// <returns>     Structure to access D and V.
        /// </returns>
        public EigenvalueDecomposition(GeneralMatrix Arg)
        {
            double[][] A = Arg.Array;
            n = Arg.ColumnDimension;
            V = new double[n][];
            for (int i = 0; i < n; i++)
            {
                V[i] = new double[n];
            }
            d = new double[n];
            e = new double[n];

            issymmetric = true;
            for (int j = 0; (j < n) & issymmetric; j++)
            {
                for (int i = 0; (i < n) & issymmetric; i++)
                {
                    issymmetric = (A[i][j] == A[j][i]);
                }
            }

            if (issymmetric)
            {
                for (int i = 0; i < n; i++)
                {
                    for (int j = 0; j < n; j++)
                    {
                        V[i][j] = A[i][j];
                    }
                }

                // Tridiagonalize.
                tred2();

                // Diagonalize.
                tql2();
            }
            else
            {
                H = new double[n][];
                for (int i2 = 0; i2 < n; i2++)
                {
                    H[i2] = new double[n];
                }
                ort = new double[n];

                for (int j = 0; j < n; j++)
                {
                    for (int i = 0; i < n; i++)
                    {
                        H[i][j] = A[i][j];
                    }
                }

                // Reduce to Hessenberg form.
                orthes();

                // Reduce Hessenberg to real Schur form.
                hqr2();
            }
        }
 /// <summary>Generate identity matrix</summary>
 /// <param name="m">   Number of rows.
 /// </param>
 /// <param name="n">   Number of colums.
 /// </param>
 /// <returns>     An m-by-n matrix with ones on the diagonal and zeros elsewhere.
 /// </returns>
 public static GeneralMatrix Identity(int m, int n)
 {
     GeneralMatrix A = new GeneralMatrix(m, n);
     double[][] X = A.Array;
     for (int i = 0; i < m; i++)
     {
         for (int j = 0; j < n; j++)
         {
             X[i][j] = (i == j ? 1.0 : 0.0);
         }
     }
     return A;
 }
        /// <summary>LU Decomposition</summary>
        /// <param name="A">  Rectangular matrix
        /// </param>
        /// <returns>     Structure to access L, U and piv.
        /// </returns>
        public LUDecomposition(GeneralMatrix A)
        {
            // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

            LU = A.ArrayCopy;
            m = A.RowDimension;
            n = A.ColumnDimension;
            piv = new int[m];
            for (int i = 0; i < m; i++)
            {
                piv[i] = i;
            }
            pivsign = 1;
            double[] LUrowi;
            double[] LUcolj = new double[m];

            // Outer loop.

            for (int j = 0; j < n; j++)
            {

                // Make a copy of the j-th column to localize references.

                for (int i = 0; i < m; i++)
                {
                    LUcolj[i] = LU[i][j];
                }

                // Apply previous transformations.

                for (int i = 0; i < m; i++)
                {
                    LUrowi = LU[i];

                    // Most of the time is spent in the following dot product.

                    int kmax = System.Math.Min(i, j);
                    double s = 0.0;
                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k] * LUcolj[k];
                    }

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.

                int p = j;
                for (int i = j + 1; i < m; i++)
                {
                    if (System.Math.Abs(LUcolj[i]) > System.Math.Abs(LUcolj[p]))
                    {
                        p = i;
                    }
                }
                if (p != j)
                {
                    for (int k = 0; k < n; k++)
                    {
                        double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
                    }
                    int k2 = piv[p]; piv[p] = piv[j]; piv[j] = k2;
                    pivsign = - pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j][j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                    {
                        LU[i][j] /= LU[j][j];
                    }
                }
            }
        }
        /// <summary>Generate matrix with random elements</summary>
        /// <param name="m">   Number of rows.
        /// </param>
        /// <param name="n">   Number of colums.
        /// </param>
        /// <returns>     An m-by-n matrix with uniformly distributed random elements.
        /// </returns>
        public static GeneralMatrix Random(int m, int n)
        {
            System.Random random = new System.Random();

            GeneralMatrix A = new GeneralMatrix(m, n);
            double[][] X = A.Array;
            for (int i = 0; i < m; i++)
            {
                for (int j = 0; j < n; j++)
                {
                    X[i][j] = random.NextDouble();
                }
            }
            return A;
        }
        /// <summary>
        /// Calibrates the pathloss parameter with information of the anchor nodes using Least Squares
        /// </summary>
        /// <param name="AnchorNodes">The anchor nodes giving the calibration information</param>
        /// <param name="filterMethod">Method to filter the RSS</param>
        public static void CalibratePathlossLS(List<Node> CalibrationNodes, Node.FilterMethod filterMethod)
        {
            double pathlossExponent = 0;
            List<Node> AllAnchors = new List<Node>();
            TwoAnchors twoAnchors1 = new TwoAnchors();
            TwoAnchors twoAnchors2 = new TwoAnchors();
            List<TwoAnchors> AllCalAnchors = new List<TwoAnchors>();
            AllAnchors = CalibrationNodes;

            for (int j = 0; j < CalibrationNodes.Count; j++)
            {
                twoAnchors1.a1 = CalibrationNodes[j].WsnId;
                twoAnchors2.a2 = CalibrationNodes[j].WsnId;
                //CalibrationNodes[j].SetOwnPosition();

                for (int i = 0; i < CalibrationNodes[j].Anchors.Count; i++)
                {
                    twoAnchors1.a2 = CalibrationNodes[j].Anchors[i].nodeid;
                    twoAnchors2.a1 = CalibrationNodes[j].Anchors[i].nodeid;
                    if (!AllCalAnchors.Contains(twoAnchors1) && !AllCalAnchors.Contains(twoAnchors2))
                    {
                        AllCalAnchors.Add(twoAnchors1);
                        AllCalAnchors.Add(twoAnchors2);
                    }
                    else
                    {
                        foreach (Node mote in AllAnchors)
                        {
                            if (mote.WsnId == CalibrationNodes[j].Anchors[i].nodeid)
                                foreach (AnchorNode an in mote.Anchors)
                                    if (an.nodeid == CalibrationNodes[j].WsnId)
                                    {
                                        foreach (double d in CalibrationNodes[j].Anchors[i].RSS)
                                        {
                                            an.RSS.Enqueue(d);
                                        }
                          //              mote.Anchors.Remove(CalibrationNodes[j].Anchors[i]);
                                    }
                        }
                        foreach (Node mote in AllAnchors)
                            if (mote.WsnId == CalibrationNodes[j].WsnId)
                                mote.Anchors.Remove(CalibrationNodes[j].Anchors[i]);
                    }

                }

            }
            int totalcountt = 0;
            foreach (Node nod in AllAnchors)
                totalcountt += nod.Anchors.Count;
            if (totalcountt >= 3)
            {
                int totalcount = 0;
                int count = 0;
                foreach (Node node in AllAnchors)
                    totalcount += node.Anchors.Count;

                double[][] y = new double[totalcount][];
                double[][] x = new double[totalcount][];

                foreach (Node cal in AllAnchors)
                {

                    for (int i = 0; i < cal.Anchors.Count; i++)
                    {
                            cal.Anchors[i].fRSS = filterMethod(cal.Anchors[i].RSS);
                            double distance = Math.Pow((Math.Pow((cal.Position.x - cal.Anchors[i].posx), 2) + Math.Pow((cal.Position.y - cal.Anchors[i].posy), 2)), 0.5);
                            if (distance == 0)
                                distance = 0.1;
                            y[count] = new double[1] { cal.Anchors[i].fRSS };
                            x[count] = new double[2] { 1, -10 * Math.Log10(distance) };
                            count++;
                    }

                }
                GeneralMatrix Y = new GeneralMatrix(y);
                GeneralMatrix X = new GeneralMatrix(x);
                GeneralMatrix XT = X.Transpose();
                GeneralMatrix haakjes = XT.Multiply(X);
                GeneralMatrix inverted = haakjes.Inverse();
                GeneralMatrix XTY = XT.Multiply(Y);

                GeneralMatrix sol = inverted.Multiply(XTY);

                RangeBasedPositioning.baseLoss = -sol.Array[0][0];
                RangeBasedPositioning.pathLossExponent = sol.Array[1][0];
            }
        }
Example #31
0
        /// <summary>
        /// Calibrates the pathloss parameter with information of the anchor nodes using Least Squares
        /// </summary>
        /// <param name="AnchorNodes">The anchor nodes giving the calibration information</param>
        /// <param name="filterMethod">Method to filter the RSS</param>
        public static void CalibratePathlossLS(List <Node> CalibrationNodes, Node.FilterMethod filterMethod)
        {
            double            pathlossExponent = 0;
            List <Node>       AllAnchors       = new List <Node>();
            TwoAnchors        twoAnchors1      = new TwoAnchors();
            TwoAnchors        twoAnchors2      = new TwoAnchors();
            List <TwoAnchors> AllCalAnchors    = new List <TwoAnchors>();

            AllAnchors = CalibrationNodes;

            for (int j = 0; j < CalibrationNodes.Count; j++)
            {
                twoAnchors1.a1 = CalibrationNodes[j].WsnId;
                twoAnchors2.a2 = CalibrationNodes[j].WsnId;
                //CalibrationNodes[j].SetOwnPosition();

                for (int i = 0; i < CalibrationNodes[j].Anchors.Count; i++)
                {
                    twoAnchors1.a2 = CalibrationNodes[j].Anchors[i].nodeid;
                    twoAnchors2.a1 = CalibrationNodes[j].Anchors[i].nodeid;
                    if (!AllCalAnchors.Contains(twoAnchors1) && !AllCalAnchors.Contains(twoAnchors2))
                    {
                        AllCalAnchors.Add(twoAnchors1);
                        AllCalAnchors.Add(twoAnchors2);
                    }
                    else
                    {
                        foreach (Node mote in AllAnchors)
                        {
                            if (mote.WsnId == CalibrationNodes[j].Anchors[i].nodeid)
                            {
                                foreach (AnchorNode an in mote.Anchors)
                                {
                                    if (an.nodeid == CalibrationNodes[j].WsnId)
                                    {
                                        foreach (double d in CalibrationNodes[j].Anchors[i].RSS)
                                        {
                                            an.RSS.Enqueue(d);
                                        }
                                        //              mote.Anchors.Remove(CalibrationNodes[j].Anchors[i]);
                                    }
                                }
                            }
                        }
                        foreach (Node mote in AllAnchors)
                        {
                            if (mote.WsnId == CalibrationNodes[j].WsnId)
                            {
                                mote.Anchors.Remove(CalibrationNodes[j].Anchors[i]);
                            }
                        }
                    }
                }
            }
            int totalcountt = 0;

            foreach (Node nod in AllAnchors)
            {
                totalcountt += nod.Anchors.Count;
            }
            if (totalcountt >= 3)
            {
                int totalcount = 0;
                int count      = 0;
                foreach (Node node in AllAnchors)
                {
                    totalcount += node.Anchors.Count;
                }

                double[][] y = new double[totalcount][];
                double[][] x = new double[totalcount][];

                foreach (Node cal in AllAnchors)
                {
                    for (int i = 0; i < cal.Anchors.Count; i++)
                    {
                        cal.Anchors[i].fRSS = filterMethod(cal.Anchors[i].RSS);
                        double distance = Math.Pow((Math.Pow((cal.Position.x - cal.Anchors[i].posx), 2) + Math.Pow((cal.Position.y - cal.Anchors[i].posy), 2)), 0.5);
                        if (distance == 0)
                        {
                            distance = 0.1;
                        }
                        y[count] = new double[1] {
                            cal.Anchors[i].fRSS
                        };
                        x[count] = new double[2] {
                            1, -10 * Math.Log10(distance)
                        };
                        count++;
                    }
                }
                GeneralMatrix Y        = new GeneralMatrix(y);
                GeneralMatrix X        = new GeneralMatrix(x);
                GeneralMatrix XT       = X.Transpose();
                GeneralMatrix haakjes  = XT.Multiply(X);
                GeneralMatrix inverted = haakjes.Inverse();
                GeneralMatrix XTY      = XT.Multiply(Y);

                GeneralMatrix sol = inverted.Multiply(XTY);

                RangeBasedPositioning.baseLoss         = -sol.Array[0][0];
                RangeBasedPositioning.pathLossExponent = sol.Array[1][0];
            }
        }