Example #1
0
        /// <summary>
        /// Find KD-tree nodes whose keys are <I>n</I> nearest neighbors to key. Uses
        /// algorithm above. Neighbors are returned in ascending order of distance to
        /// key.
        /// </summary>
        /// <param name="key">key for KD-tree node</param>
        /// <param name="n">how many neighbors to find</param>
        /// <param name="checker">an optional object to filter matches</param>
        /// <returns>objects at node nearest to key, or null on failure</returns>
        /// <exception cref="KeySizeException">if key.Length mismatches K</exception>
        public List <T> Nearest(double[] key, int n, Predicate <T> checker)
        {
            if (n <= 0)
            {
                return(new List <T>());
            }
            NearestNeighborList <KDNode <T> > nnl = this.getNbrs(key, n, checker);

            n = nnl.Count;
            List <T> nbrs = new List <T>();

            for (int i = 0; i < n; ++i)
            {
                KDNode <T> kd = nnl.RemoveHighest();
                nbrs.Add(kd.Value);
            }
            //nbrs.Reverse();
            return(nbrs);
        }
Example #2
0
        private NearestNeighborList <KDNode <T> > getNbrs(double[] key, int n, Predicate <T> checker)
        {
            if (key.Length != this.m_K)
            {
                throw new KeySizeException();
            }
            NearestNeighborList <KDNode <T> > nnl = new NearestNeighborList <KDNode <T> >(n);
            // initial call is with infinite hyper-rectangle and max distance
            HRect  hr           = HRect.InfiniteHRect(key.Length);
            double max_dist_sqd = Double.MaxValue;
            HPoint keyp         = new HPoint(key);

            if (this.m_count > 0)
            {
                long timeout = (this.m_timeout > 0) ? (CurrentTimeMillis() + this.m_timeout) : 0;
                KDNode <T> .NearestNeighbors(this.m_root, keyp, hr, max_dist_sqd, 0, this.m_K, nnl, checker, timeout);
            }
            return(nnl);
        }
Example #3
0
        private List <T> nearestDistance(double[] key, double dist, DistanceMetric metric)
        {
            NearestNeighborList <KDNode <T> > nnl = this.getNbrs(key);
            int      n    = nnl.Count;
            List <T> nbrs = new List <T>();

            for (int i = 0; i < n; ++i)
            {
                KDNode <T> kd = nnl.RemoveHighest();
                HPoint     p  = kd.Key;
                //HACK metric.Distance(kd.Key.Coord, key) < dist changed to - metric.Distance(kd.Key.Coord, key) <= dist
                if (metric.Distance(kd.Key.Coord, key) <= dist)
                {
                    nbrs.Add(kd.Value);
                }
            }
            //HACK Verificar se o reverse é necessario
            //nbrs.Reverse();
            return(nbrs);
        }
Example #4
0
        // Method Nearest Neighbor from Andrew Moore's thesis. Numbered
        // comments are direct quotes from there. NearestNeighborList solution
        // courtesy of Bjoern Heckel.
        public static void NearestNeighbors <T>(KDNode <T> kd, HPoint target, HRect hr, double max_dist_sqd, int lev,
                                                int K, NearestNeighborList <KDNode <T> > nnl, Predicate <T> checker,
                                                long timeout)
        {
            // 1. if kd is empty then set dist-sqd to infinity and exit.
            if (kd == null)
            {
                return;
            }
            if ((timeout > 0) && (timeout < DateTime.Now.TimeOfDay.TotalMilliseconds))
            {
                return;
            }
            // 2. s := split field of kd
            int s = lev % K;
            // 3. pivot := dom-elt field of kd
            HPoint pivot           = kd.key;
            double pivot_to_target = HPoint.SqrDist(pivot, target);
            // 4. Cut hr into to sub-hyperrectangles left-hr and right-hr.
            // The cut plane is through pivot and perpendicular to the s
            // dimension.
            HRect left_hr  = hr; // optimize by not cloning
            HRect right_hr = (HRect)hr.Clone();

            left_hr.Max.Coord[s]  = pivot.Coord[s];
            right_hr.Min.Coord[s] = pivot.Coord[s];
            // 5. target-in-left := target_s <= pivot_s
            bool       target_in_left = target.Coord[s] < pivot.Coord[s];
            KDNode <T> nearer_kd;
            HRect      nearer_hr;
            KDNode <T> further_kd;
            HRect      further_hr;

            // 6. if target-in-left then
            // 6.1. nearer-kd := left field of kd and nearer-hr := left-hr
            // 6.2. further-kd := right field of kd and further-hr := right-hr
            if (target_in_left)
            {
                nearer_kd  = kd.left;
                nearer_hr  = left_hr;
                further_kd = kd.right;
                further_hr = right_hr;
            }
            //
            // 7. if not target-in-left then
            // 7.1. nearer-kd := right field of kd and nearer-hr := right-hr
            // 7.2. further-kd := left field of kd and further-hr := left-hr
            else
            {
                nearer_kd  = kd.right;
                nearer_hr  = right_hr;
                further_kd = kd.left;
                further_hr = left_hr;
            }
            // 8. Recursively call Nearest Neighbor with paramters
            // (nearer-kd, target, nearer-hr, max-dist-sqd), storing the
            // results in nearest and dist-sqd
            NearestNeighbors(nearer_kd, target, nearer_hr, max_dist_sqd, lev + 1, K, nnl, checker, timeout);
            // KDNode<T> nearest = nnl.getHighest();
            double dist_sqd;

            if (!nnl.IsCapacityReached())
            {
                dist_sqd = Double.MaxValue;
            }
            else
            {
                dist_sqd = nnl.MaxPriority;
            }
            // 9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
            max_dist_sqd = Math.Min(max_dist_sqd, dist_sqd);
            // 10. A nearer point could only lie in further-kd if there were some
            // part of further-hr within distance max-dist-sqd of
            // target.
            HPoint closest = further_hr.Closest(target);

            if (HPoint.SqrDist(closest, target) < max_dist_sqd)
            {
                // 10.1 if (pivot-target)^2 < dist-sqd then
                if (pivot_to_target < dist_sqd)
                {
                    // 10.1.1 nearest := (pivot, range-elt field of kd)
                    // nearest = kd;
                    // 10.1.2 dist-sqd = (pivot-target)^2
                    dist_sqd = pivot_to_target;
                    // add to nnl
                    if (!kd.deleted && ((checker == null) || checker.Invoke(kd.value)))
                    {
                        nnl.Insert(kd, dist_sqd);
                    }
                    // 10.1.3 max-dist-sqd = dist-sqd
                    // max_dist_sqd = dist_sqd;
                    if (nnl.IsCapacityReached())
                    {
                        max_dist_sqd = nnl.MaxPriority;
                    }
                    else
                    {
                        max_dist_sqd = Double.MaxValue;
                    }
                }
                // 10.2 Recursively call Nearest Neighbor with parameters
                // (further-kd, target, further-hr, max-dist_sqd),
                // storing results in temp-nearest and temp-dist-sqd
                NearestNeighbors(further_kd, target, further_hr, max_dist_sqd, lev + 1, K, nnl, checker, timeout);
            }
        }