Example #1
0
        public ClusterNodeCollection ExecuteClustering(ClusterDistance.Strategy strategy, int k)
        {
            nodeCollection.BuildSingletonCluster(leafCollection);

            dissimilarityMatrix = new DissimilarityMatrix();
            foreach (ClusterNodePair clusterPair in GetClusterPairCollection())
            {
                double distanceBetweenTwoClusters = ClusterDistance.ComputeLeafDistance(clusterPair.Cluster1, clusterPair.Cluster2);
                dissimilarityMatrix.AddClusterPairAndDistance(clusterPair, distanceBetweenTwoClusters);
            }

            BuildHierarchicalClustering(nodeCollection.Count, strategy, k);

            return(nodeCollection);
        }
Example #2
0
        // this method compute distance between clusters thas has subclusters (cluster2 represents the new cluster)
        public static double ComputeNodeDistance(ClusterNode node1, ClusterNode node2, DissimilarityMatrix dissimilarityMatrix, Strategy strategy)
        {
            ClusterNode node21    = node2.NodeAt(0);
            ClusterNode node22    = node2.NodeAt(1);
            double      distance1 = dissimilarityMatrix.ReturnClusterPairDistance(new ClusterNodePair(node1, node21));
            double      distance2 = dissimilarityMatrix.ReturnClusterPairDistance(new ClusterNodePair(node1, node22));

            switch (strategy)
            {
            case Strategy.MinLinkage:
                return(distance1 < distance2 ? distance1 : distance2);

            case Strategy.MaxLinkage:
                return(distance1 > distance2 ? distance1 : distance2);

            case Strategy.AverageLinkage:
                return((distance1 + distance2) / 2);

            case Strategy.AverageLinkageWeighted:
                return(distance1 * node21.TotalLeafsCount / node2.TotalLeafsCount +
                       distance2 * node22.TotalLeafsCount / node2.TotalLeafsCount);

            default:
                return(0);
            }
        }