private string exportCSV_string(ObservationSet export)
        {
            var csv = new StringBuilder();

            // Generate the first line
            string firstline = "";

            foreach (string attr_name in export.attributes.Keys.ToList())
            {
                firstline += attr_name;
                firstline += seperator;
            }
            firstline += export.target_attribute + seperator;
            csv.AppendLine(firstline);
            foreach (DataInstance instance in export.instances)
            {
                string my_line = "";
                foreach (string attr_name in export.attributes.Keys.ToList())
                {
                    my_line += instance.getProperty(attr_name);
                    my_line += seperator;
                }
                my_line += instance.getProperty(export.target_attribute);
                my_line += seperator;

                csv.AppendLine(my_line);
            }
            return(csv.ToString());
        }
Example #2
0
        static void classify(TextWriter writer, char csv_seperator, char dec_seperator)
        {
            ModelLoader    loader         = new ModelLoader();
            DataController datacontroller = new DataController(csv_seperator, dec_seperator);


            // Check if the data is already classified, and thus we are in verification mode and will check how our model holds up.
            string verification_mode_string = writer.askFromConfig("Verification mode? (TRUE or FALSE) ", "CLASSIFICATION", "verification-mode");
            bool   verification_mode        = (verification_mode_string == "TRUE");


            // Import the classification data.
            string         data_location   = writer.askFromConfig("Enter the file path to import the data from. ", "CLASSIFICATION", "input-location");
            ObservationSet observations    = verification_mode ? datacontroller.importExamples(data_location) : datacontroller.importUnclassified(data_location);
            string         classifier_name = observations.target_attribute;

            // Import the model
            string       model_location = writer.askFromConfig("Enter the file path to import the model from. ", "CLASSIFICATION", "model-location");
            DecisionTree model          = loader.load_model(model_location, classifier_name);

            // Get ready for classification.
            string export_location = writer.askFromConfig("Enter the file path to export data to. ", "CLASSIFICATION", "output-location");

            Console.WriteLine($"READY for classification{(verification_mode ? " in verification mode" : "")}. Press a key to start classification process \n");
            Console.ReadKey(true);

            List <DataInstance> classified_instances = new List <DataInstance>();
            int correct_classifications = 0;

            foreach (DataInstance instance in observations.instances)
            {
                string prediction = model.classify(instance);
                if (verification_mode)
                {
                    if (instance.getProperty(classifier_name) == prediction)
                    {
                        correct_classifications++;
                    }
                }
                else
                {
                    instance.setProperty(classifier_name, model.classify(instance));
                }
                classified_instances.Add(instance);
            }
            ObservationSet export_set = new ObservationSet(classified_instances, classifier_name, observations.attributes);

            Console.WriteLine("Classification succesful, saving now.");

            if (verification_mode)
            {
                double succesPercentage = Math.Round(((double)correct_classifications / (double)classified_instances.Count) * 100, 2);
                Console.WriteLine($"Verification mode results: success rate of {succesPercentage}% ({correct_classifications} / {classified_instances.Count}).");
            }
            datacontroller.exportSet(export_location, export_set);
        }
Example #3
0
        public DecisionTree TRAIN(ObservationSet set, Dictionary <string, object> parameters)
        {
            string parameter_string = "TRAIN(";

            foreach (string key in parameters.Keys.ToList())
            {
                parameter_string += $"{key}={parameters[key]}";
                if (key != parameters.Keys.Last())
                {
                    parameter_string += ",";
                }
            }
            parameter_string += ")";
            Console.WriteLine(parameter_string);

            DecisionTree tree = this.algorithm.train(set.instances, set.target_attribute, set.attributes, this, parameters);

            this.SNAPSHOT("final", tree);
            return(tree);
        }
        public void exportSet(string filepath, ObservationSet export)
        {
            string writestring = exportCSV_string(export);

            File.WriteAllText(filepath, writestring);
        }
Example #5
0
        static void train(TextWriter writer, char csv_seperator, char dec_seperator)
        {
            // Ask file location questions
            string input_location      = writer.askFromConfig("Enter the file path to import data from. ", "GENERAL", "input-location");
            string snapshot_location   = writer.askFromConfig("Enter the directory to output snapshots to. ", "EXPORT", "snapshot-location");
            string thoughts_location   = writer.askFromConfig("Enter the directory to output inferences to. ", "EXPORT", "inference-location");
            string vocabulary_location = writer.askFromConfig("Enter the file path to import the vocabulary form ", "VOCABULARY", "location");

            // General settings
            string catchinput = writer.askFromConfig("Catch error and output?", "GENERAL", "output-on-error");
            bool   catcherror = (catchinput == "TRUE");


            string model_extension   = "txt";
            string rules_extension   = "rules.txt";
            string drawing_extension = "GRAPH";

            Stopwatch stopwatch = new Stopwatch();

            stopwatch.Start();

            DataController import       = new DataController(csv_seperator, dec_seperator);
            ObservationSet observations = import.importExamples(input_location);

            VocabularyImporter vocab = new VocabularyImporter();

            vocab.import(vocabulary_location);

            InferenceManager inferences = new InferenceManager(vocab.vocabulary, csv_seperator);

            SnapShot snapShot = new SnapShot(writer, stopwatch, snapshot_location, model_extension, rules_extension, drawing_extension);


            string    algorithmChoice = writer.askFromConfig("What algorithm should be used? [ID3, C4.5]", "GENERAL", "algorithm");
            Algorithm algorithm       = null;
            Dictionary <string, object> parameters = new Dictionary <string, object>();

            switch (algorithmChoice)
            {
            case "ID3":
                algorithm = new ID3Algorithm();
                break;

            case "C4.5":
                string confidence_input  = writer.askFromConfig("What confidence level should be used", "C4.5", "confidence");
                string keep_values_input = writer.askFromConfig("Should all values keep getting considered even when not in subset?", "C4.5", "keep_considering_values");
                string minimum_number_of_objects_input = writer.askFromConfig("How many objects should a leaf at least contain?", "C4.5", "minimum_number_of_objects");

                parameters["confidence"]                = float.Parse(confidence_input);
                parameters["keep_values_input"]         = bool.Parse(keep_values_input);
                parameters["minimum_number_of_objects"] = int.Parse(minimum_number_of_objects_input);

                algorithm = new C45Algorithm();
                break;

            default:
                throw new Exception($"Unknown algorithm given: {algorithmChoice}");
            }
            Agent agent = new Agent(algorithm, inferences, snapShot);

            Console.WriteLine($"READY ({stopwatch.ElapsedMilliseconds} ms setup time). Press a key to start training process \n");
            Console.ReadKey(true);

            // Train the algorithm based on the Training set
            Console.WriteLine("Starting Training process (TRAIN).");
            Console.WriteLine("");
            stopwatch.Reset();
            stopwatch.Start();
            if (catcherror)
            {
                try
                {
                    agent.TRAIN(observations, parameters);
                }
                catch (Exception e)
                {
                    Console.WriteLine("Encountered an error! Writing output and model anyways.");
                    writer.set_location(thoughts_location);
                    inferences.write(writer);
                    throw (e);
                }
            }
            else
            {
                agent.TRAIN(observations, parameters);
            }

            Console.WriteLine("");
            long training_time = stopwatch.ElapsedMilliseconds;
            long snapshot_time = training_time - snapShot.secondsBySnapShot;

            Console.WriteLine("Training completed. Processing thoughts.");

            writer.set_location(thoughts_location);
            inferences.write(writer);

            long thought_time = stopwatch.ElapsedMilliseconds;

            Console.WriteLine($"Training time: {training_time}ms including snapshotting, {snapshot_time}ms excluding. Thoughts processing time: {thought_time - training_time}ms.");
        }