CreateIpoptProblem() private method

private CreateIpoptProblem ( int n, double x_L, double x_U, int m, double g_L, double g_U, int nele_jac, int nele_hess, IpoptIndexStyle index_style, Eval_F_CB eval_f, Eval_G_CB eval_g, Eval_Grad_F_CB eval_grad_f, Eval_Jac_G_CB eval_jac_g, Eval_H_CB eval_h ) : IntPtr
n int
x_L double
x_U double
m int
g_L double
g_U double
nele_jac int
nele_hess int
index_style IpoptIndexStyle
eval_f Eval_F_CB
eval_g Eval_G_CB
eval_grad_f Eval_Grad_F_CB
eval_jac_g Eval_Jac_G_CB
eval_h Eval_H_CB
return System.IntPtr
Example #1
0
 public void Setup()
 {
     _hs037    = new HS037();
     _instance = IpoptAdapter.CreateIpoptProblem(_hs037._n, _hs037._x_L, _hs037._x_U, _hs037._m, _hs037._g_L,
                                                 _hs037._g_U, _hs037._nele_jac, _hs037._nele_hess, IpoptIndexStyle.C,
                                                 _hs037.eval_f, _hs037.eval_g, _hs037.eval_grad_f, _hs037.eval_jac_g,
                                                 _hs037.eval_h);
     IpoptAdapter.AddIpoptStrOption(_instance, "hessian_approximation", "limited-memory");
     IpoptAdapter.AddIpoptIntOption(_instance, "limited_memory_max_history", 5);
 }
Example #2
0
        /// <summary>
        /// Constructor for creating a new Ipopt Problem object using native
        /// function delegates. This function
        /// initializes an object that can be passed to the IpoptSolve call.  It
        /// contains the basic definition of the optimization problem, such
        /// as number of variables and constraints, bounds on variables and
        /// constraints, information about the derivatives, and the callback
        /// function for the computation of the optimization problem
        /// functions and derivatives.  During this call, the options file
        /// ipopt.opt is read as well.
        /// </summary>
        /// <param name="n">Number of optimization variables</param>
        /// <param name="x_L">Lower bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="x_U">Upper bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="m">Number of constraints.</param>
        /// <param name="g_L">Lower bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="g_U">Upper bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="nele_jac">Number of non-zero elements in constraint Jacobian.</param>
        /// <param name="nele_hess">Number of non-zero elements in Hessian of Lagrangian.</param>
        /// <param name="eval_f_cb">Native callback function for evaluating objective function</param>
        /// <param name="eval_g_cb">Native callback function for evaluating constraint functions</param>
        /// <param name="eval_grad_f_cb">Native callback function for evaluating gradient of objective function</param>
        /// <param name="eval_jac_g_cb">Native callback function for evaluating Jacobian of constraint functions</param>
        /// <param name="eval_h_cb">Native callback function for evaluating Hessian of Lagrangian function</param>
        public IpoptProblem(int n, double[] x_L, double[] x_U, int m, double[] g_L, double[] g_U, int nele_jac, int nele_hess,
                            Eval_F_CB eval_f_cb, Eval_G_CB eval_g_cb, Eval_Grad_F_CB eval_grad_f_cb, Eval_Jac_G_CB eval_jac_g_cb, Eval_H_CB eval_h_cb)
        {
            m_eval_f_cb       = eval_f_cb;
            m_eval_g_cb       = eval_g_cb;
            m_eval_grad_f_cb  = eval_grad_f_cb;
            m_eval_jac_g_cb   = eval_jac_g_cb;
            m_eval_h_cb       = eval_h_cb;
            m_intermediate_cb = null;

            m_problem = IpoptAdapter.CreateIpoptProblem(n, x_L, x_U, m, g_L, g_U, nele_jac, nele_hess, IpoptIndexStyle.C,
                                                        m_eval_f_cb, m_eval_g_cb, m_eval_grad_f_cb, m_eval_jac_g_cb, m_eval_h_cb);

            m_disposed = false;
        }
Example #3
0
        /// <summary>
        /// Constructor for creating a new Ipopt Problem object using managed
        /// function delegates.  This function
        /// initializes an object that can be passed to the IpoptSolve call.  It
        /// contains the basic definition of the optimization problem, such
        /// as number of variables and constraints, bounds on variables and
        /// constraints, information about the derivatives, and the callback
        /// function for the computation of the optimization problem
        /// functions and derivatives.  During this call, the options file
        /// ipopt.opt is read as well.
        /// </summary>
        /// <param name="n">Number of optimization variables</param>
        /// <param name="x_L">Lower bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="x_U">Upper bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="m">Number of constraints.</param>
        /// <param name="g_L">Lower bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="g_U">Upper bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="nele_jac">Number of non-zero elements in constraint Jacobian.</param>
        /// <param name="nele_hess">Number of non-zero elements in Hessian of Lagrangian.</param>
        /// <param name="eval_f_cb">Managed callback function for evaluating objective function</param>
        /// <param name="eval_g_cb">Managed callback function for evaluating constraint functions</param>
        /// <param name="eval_grad_f_cb">Managed callback function for evaluating gradient of objective function</param>
        /// <param name="eval_jac_g_cb">Managed callback function for evaluating Jacobian of constraint functions</param>
        /// <param name="eval_h_cb">Managed callback function for evaluating Hessian of Lagrangian function</param>
        public IpoptProblem(int n, double[] x_L, double[] x_U, int m, double[] g_L, double[] g_U, int nele_jac, int nele_hess,
                            EvaluateObjectiveDelegate eval_f_cb, EvaluateConstraintsDelegate eval_g_cb, EvaluateObjectiveGradientDelegate eval_grad_f_cb,
                            EvaluateJacobianDelegate eval_jac_g_cb, EvaluateHessianDelegate eval_h_cb)
        {
            m_eval_f_cb       = new ObjectiveEvaluator(eval_f_cb).Evaluate;
            m_eval_g_cb       = new ConstraintsEvaluator(eval_g_cb).Evaluate;
            m_eval_grad_f_cb  = new ObjectiveGradientEvaluator(eval_grad_f_cb).Evaluate;
            m_eval_jac_g_cb   = new JacobianEvaluator(eval_jac_g_cb).Evaluate;
            m_eval_h_cb       = new HessianEvaluator(eval_h_cb).Evaluate;
            m_intermediate_cb = null;

            m_problem = IpoptAdapter.CreateIpoptProblem(n, x_L, x_U, m, g_L, g_U, nele_jac, nele_hess, IpoptIndexStyle.C,
                                                        m_eval_f_cb, m_eval_g_cb, m_eval_grad_f_cb, m_eval_jac_g_cb, m_eval_h_cb);

            m_disposed = false;
        }
Example #4
0
        /// <summary>
        /// Constructor for creating a subclassed Ipopt Problem object using managed or
        /// native function delegates. This is the preferred constructor when
        /// subclassing IpoptProblem. Prerequisite is that the managed/native optimization
        /// function delegates are implemented in the inheriting class.
        /// This function
        /// initializes an object that can be passed to the IpoptSolve call.  It
        /// contains the basic definition of the optimization problem, such
        /// as number of variables and constraints, bounds on variables and
        /// constraints, information about the derivatives, and the callback
        /// function for the computation of the optimization problem
        /// functions and derivatives. During this call, the options file
        /// ipopt.opt is read as well.
        /// </summary>
        /// <param name="n">Number of optimization variables</param>
        /// <param name="x_L">Lower bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="x_U">Upper bounds on variables. This array of size n is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="m">Number of constraints.</param>
        /// <param name="g_L">Lower bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// less or equal than the number specified by option 'nlp_lower_bound_inf' is interpreted to be minus infinity.</param>
        /// <param name="g_U">Upper bounds on constraints. This array of size m is copied internally, so that the
        /// caller can change the incoming data after return without that IpoptProblem is modified.  Any value
        /// greater or equal than the number specified by option 'nlp_upper_bound_inf' is interpreted to be plus infinity.</param>
        /// <param name="nele_jac">Number of non-zero elements in constraint Jacobian.</param>
        /// <param name="nele_hess">Number of non-zero elements in Hessian of Lagrangian.</param>
        /// <param name="useNativeCallbackFunctions">If set to true, native callback functions are used to setup
        /// the Ipopt problem; if set to false, managed callback functions are used.</param>
        /// <param name="useHessianApproximation">If set to true, the Ipopt optimizer creates a limited memory
        /// Hessian approximation and the eval_h (managed or native) method need not be implemented.
        /// If set to false, an exact Hessian should be evaluated using the appropriate Hessian evaluation method.</param>
        /// <param name="useIntermediateCallback">If set to true, the intermediate method (managed or native) will be called
        /// after each full iteration. If false, the intermediate callback function will not be called.</param>
        protected IpoptProblem(int n, double[] x_L, double[] x_U, int m, double[] g_L, double[] g_U, int nele_jac, int nele_hess,
                               bool useNativeCallbackFunctions = false, bool useHessianApproximation = false, bool useIntermediateCallback = false)
        {
            if (useNativeCallbackFunctions)
            {
                m_eval_f_cb      = eval_f;
                m_eval_g_cb      = eval_g;
                m_eval_grad_f_cb = eval_grad_f;
                m_eval_jac_g_cb  = eval_jac_g;
                m_eval_h_cb      = eval_h;
            }
            else
            {
                m_eval_f_cb      = new ObjectiveEvaluator(eval_f).Evaluate;
                m_eval_g_cb      = new ConstraintsEvaluator(eval_g).Evaluate;
                m_eval_grad_f_cb = new ObjectiveGradientEvaluator(eval_grad_f).Evaluate;
                m_eval_jac_g_cb  = new JacobianEvaluator(eval_jac_g).Evaluate;
                m_eval_h_cb      = new HessianEvaluator(eval_h).Evaluate;
            }
            m_intermediate_cb = null;

            m_problem = IpoptAdapter.CreateIpoptProblem(n, x_L, x_U, m, g_L, g_U, nele_jac, nele_hess, IpoptIndexStyle.C,
                                                        m_eval_f_cb, m_eval_g_cb, m_eval_grad_f_cb, m_eval_jac_g_cb, m_eval_h_cb);

            if (useHessianApproximation)
            {
                AddOption("hessian_approximation", "limited-memory");
            }

            if (useIntermediateCallback)
            {
                if (useNativeCallbackFunctions)
                {
                    SetIntermediateCallback((Intermediate_CB)intermediate);
                }
                else
                {
                    SetIntermediateCallback((IntermediateDelegate)intermediate);
                }
            }

            m_disposed = false;
        }