Example #1
0
        private void MnistDemo()
        {
            // Load data
            this.training = MnistReader.Load(@"..\..\Mnist\train-labels.idx1-ubyte", @"..\..\Mnist\train-images.idx3-ubyte");
            this.testing = MnistReader.Load(@"..\..\Mnist\t10k-labels.idx1-ubyte", @"..\..\Mnist\t10k-images.idx3-ubyte");

            if (this.training.Count == 0 || this.testing.Count == 0)
            {
                Console.WriteLine("Missing Mnist training/testing files.");
                Console.ReadKey();
                return;
            }

            // Create network
            this.net = new Net();
            this.net.AddLayer(new InputLayer(24, 24, 1));
            this.net.AddLayer(new ConvLayer(5, 5, 8) { Stride = 1, Pad = 2, Activation = Activation.Relu });
            this.net.AddLayer(new PoolLayer(2, 2) { Stride = 2 });
            this.net.AddLayer(new ConvLayer(5, 5, 16) { Stride = 1, Pad = 2, Activation = Activation.Relu });
            this.net.AddLayer(new PoolLayer(3, 3) { Stride = 3 });
            this.net.AddLayer(new SoftmaxLayer(10));

            this.trainer = new Trainer(this.net)
            {
                BatchSize = 20,
                L2Decay = 0.001,
                TrainingMethod = Trainer.Method.Adadelta
            };

            do
            {
                var sample = this.SampleTrainingInstance();
                this.Step(sample);
            } while (!Console.KeyAvailable);
        }
Example #2
0
        private static void Main(string[] args)
        {
            // species a 2-layer neural network with one hidden layer of 20 neurons
            var net = new Net();

            // input layer declares size of input. here: 2-D data
            // ConvNetJS works on 3-Dimensional volumes (width, height, depth), but if you're not dealing with images
            // then the first two dimensions (width, height) will always be kept at size 1
            net.AddLayer(new InputLayer(1, 1, 2));

            // declare 20 neurons, followed by ReLU (rectified linear unit non-linearity)
            net.AddLayer(new FullyConnLayer(20, Activation.Relu));

            // declare the linear classifier on top of the previous hidden layer
            net.AddLayer(new SoftmaxLayer(10));

            // forward a random data point through the network
            var x = new Volume(new[] {0.3, -0.5});

            var prob = net.Forward(x);

            // prob is a Volume. Volumes have a property Weights that stores the raw data, and WeightGradients that stores gradients
            Console.WriteLine("probability that x is class 0: " + prob.Weights[0]); // prints e.g. 0.50101

            var trainer = new Trainer(net) {LearningRate = 0.01, L2Decay = 0.001};
            trainer.Train(x, 0); // train the network, specifying that x is class zero

            var prob2 = net.Forward(x);
            Console.WriteLine("probability that x is class 0: " + prob2.Weights[0]);
            // now prints 0.50374, slightly higher than previous 0.50101: the networks
            // weights have been adjusted by the Trainer to give a higher probability to
            // the class we trained the network with (zero)
        }
Example #3
0
        private static void Regression1DDemo()
        {
            var net = new Net();
            net.AddLayer(new InputLayer(1, 1, 1));
            net.AddLayer(new FullyConnLayer(20, Activation.Relu));
            net.AddLayer(new FullyConnLayer(20, Activation.Sigmoid));
            net.AddLayer(new RegressionLayer(1));

            var trainer = new Trainer(net) { LearningRate = 0.01, Momentum = 0.0, BatchSize = 1, L2Decay = 0.001 };

            // Function we want to learn
            double[] x = { 0.0, 0.5, 1.0 };
            double[] y = { 0.0, 0.1, 0.2 };
            var n = x.Length;

            // Training
            do
            {
                RegressionUpdate(n, x, trainer, y);
            } while (!Console.KeyAvailable);

            // Testing
            var netx = new Volume(1, 1, 1);
            for (var ix = 0; ix < n; ix++)
            {
                netx.Weights = new[] { x[ix] };
                var result = net.Forward(netx);
            }
        }
Example #4
0
        private static void Classify2DDemo()
        {
            var net = new Net();
            net.AddLayer(new InputLayer(1, 1, 2));
            net.AddLayer(new FullyConnLayer(6, Activation.Tanh));
            net.AddLayer(new FullyConnLayer(2, Activation.Tanh));
            net.AddLayer(new SoftmaxLayer(2));

            var trainer = new Trainer(net) { LearningRate = 0.01, Momentum = 0.0, BatchSize = 10, L2Decay = 0.001 };

            // Data
            var data = new List<double[]>();
            var labels = new List<int>();
            data.Add(new[] { -0.4326, 1.1909 });
            labels.Add(1);
            data.Add(new[] { 3.0, 4.0 });
            labels.Add(1);
            data.Add(new[] { 0.1253, -0.0376 });
            labels.Add(1);
            data.Add(new[] { 0.2877, 0.3273 });
            labels.Add(1);
            data.Add(new[] { -1.1465, 0.1746 });
            labels.Add(1);
            data.Add(new[] { 1.8133, 1.0139 });
            labels.Add(0);
            data.Add(new[] { 2.7258, 1.0668 });
            labels.Add(0);
            data.Add(new[] { 1.4117, 0.5593 });
            labels.Add(0);
            data.Add(new[] { 4.1832, 0.3044 });
            labels.Add(0);
            data.Add(new[] { 1.8636, 0.1677 });
            labels.Add(0);
            data.Add(new[] { 0.5, 3.2 });
            labels.Add(1);
            data.Add(new[] { 0.8, 3.2 });
            labels.Add(1);
            data.Add(new[] { 1.0, -2.2 });
            labels.Add(1);
            var n = labels.Count;

            // Training
            do
            {
                Classify2DUpdate(n, data, trainer, labels);
            } while (!Console.KeyAvailable);

            // Testing
            var netx = new Volume(1, 1, 1);
            for (var ix = 0; ix < n; ix++)
            {
                netx.Weights = data[ix];
                var result = net.Forward(netx);
                var c = net.GetPrediction();
                bool accurate = c == labels[ix];
            }
        }
Example #5
0
        private static void Classify2DUpdate(int n, List<double[]> data, Trainer trainer, List<int> labels)
        {
            var netx = new Volume(1, 1, 1);
            var avloss = 0.0;

            for (var iters = 0; iters < 50; iters++)
            {
                for (var ix = 0; ix < n; ix++)
                {
                    netx.Weights = data[ix];
                    trainer.Train(netx, labels[ix]);
                    avloss += trainer.Loss;
                }
            }

            avloss /= n * 50.0;
            Console.WriteLine("Loss:" + avloss);
        }
Example #6
0
        private static void RegressionUpdate(int n, double[] x, Trainer trainer, double[] y)
        {
            var netx = new Volume(1, 1, 1);
            var avloss = 0.0;

            for (var iters = 0; iters < 50; iters++)
            {
                for (var ix = 0; ix < n; ix++)
                {
                    netx.Weights = new[] { x[ix] };
                    trainer.Train(netx, y[ix]);
                    avloss += trainer.Loss;
                }
            }

            avloss /= n * 50.0;
            Console.WriteLine("Loss:" + avloss);
        }