Example #1
0
        // counts the amount of times a attribute is used in the workload queries
        static void freqCounter(string v, string k, int times)
        {
            v = trimString(v);

            if (double.TryParse(v, out double test))
            {
                return;
            }
            tuple <string, string> temp = new tuple <string, string>(k, v);

            if (freqDict.ContainsKey(temp))
            {
                freqDict[temp] += times;
            }
            else
            {
                freqDict.Add(temp, times);
            }

            if (maxDict.ContainsKey(k))
            {
                if (maxDict[k] < freqDict[temp])
                {
                    maxDict[k] = freqDict[temp];
                }
            }
            else
            {
                maxDict.Add(k, freqDict[temp]);
            }
        }
Example #2
0
        // calculates the simulator of a tuple and a query
        static tuple <int, double>[] calculateTopK(string[] columns, string[] values, int k)
        {
            string           sql    = "select * from autompg";
            SQLiteCommand    com    = new SQLiteCommand(sql, m_dbConnection);
            SQLiteDataReader reader = com.ExecuteReader();

            tuple <int, double>[] topKTuples = new tuple <int, double> [k];
            for (int i = 0; i < k; i++)
            {
                topKTuples[i] = new tuple <int, double>(-1, 0);
            }

            Dictionary <int, double> MissingAttributesValues = new Dictionary <int, double>();

            while (reader.Read())
            {
                double simScore = 0;
                for (int i = 0; i < values.Length; i++)
                {
                    string           sqlMeta    = "select idfqf from idfqf where column = '" + columns[i] + "' and value = " + values[i];
                    SQLiteCommand    metaCom    = new SQLiteCommand(sqlMeta, meta_dbConnection);
                    SQLiteDataReader metaReader = metaCom.ExecuteReader();
                    if (metaReader.Read())
                    {
                        // numerical similarity
                        if (double.TryParse(values[i], out double q))
                        {
                            // t value van de tuple, q value van de query
                            double innerproduct = ((double.Parse(reader[columns[i]].ToString()) - q) / hColumnDict[columns[i]]);
                            simScore += Math.Exp(-0.5 * innerproduct * innerproduct) * (double)metaReader.GetValue(0);
                        }

                        // categorical similarity
                        else
                        {
                            string           sqlJaq    = "select jacq from jacquard where value_1 = " + values[i] + " and value_2 = '" + reader[columns[i]] + "'";
                            SQLiteCommand    jaqCom    = new SQLiteCommand(sqlJaq, meta_dbConnection);
                            SQLiteDataReader jaqReader = jaqCom.ExecuteReader();
                            if (jaqReader.Read())
                            {
                                simScore += (double)jaqReader.GetValue(0) * (double)metaReader.GetValue(0);
                            }
                        }
                    }
                    else if (double.TryParse(values[i], out double q))
                    {
                        double denom = 0;
                        sql = "select " + columns[i] + " from autompg";
                        SQLiteCommand    idfcom = new SQLiteCommand(sql, m_dbConnection);
                        SQLiteDataReader r      = idfcom.ExecuteReader();
                        while (r.Read())
                        {
                            double ti   = double.Parse(r[columns[i]].ToString());
                            double diff = ti - q;
                            denom += Math.Exp(-0.5 * (diff / hColumnDict[columns[i]]) * (diff / hColumnDict[columns[i]]));
                        }
                        double idfnumber    = Math.Log10(N / denom);
                        double innerproduct = ((double.Parse(reader[columns[i]].ToString()) - q) / hColumnDict[columns[i]]);
                        simScore += Math.Exp(-0.5 * innerproduct * innerproduct) * idfnumber;
                    }
                }
                double missingscore = 0;
                // calculate missing score
                for (int i = 0; i < categoricalNames.Length; i++)
                {
                    string           sqlMeta    = "select idfqf from idfqf where column = '" + categoricalNames[i] + "' and value = '" + reader[categoricalNames[i]] + "'";
                    SQLiteCommand    metaCom    = new SQLiteCommand(sqlMeta, meta_dbConnection);
                    SQLiteDataReader metaReader = metaCom.ExecuteReader();
                    if (metaReader.Read())
                    {
                        missingscore += Math.Log10((double)metaReader.GetValue(0));
                    }
                }

                MissingAttributesValues.Add(int.Parse(reader["id"].ToString()), missingscore);

                //calculate top k using similarity score
                for (int i = 0; i < k; i++)
                {
                    if (topKTuples[i].first == -1)
                    {
                        topKTuples[i] = new tuple <int, double>(int.Parse(reader["id"].ToString()), simScore);
                        break;
                    }

                    if (topKTuples[i].second == simScore)
                    {
                        if (MissingAttributesValues[topKTuples[i].first] < MissingAttributesValues[int.Parse(reader["id"].ToString())])
                        {
                            for (int j = k - 1; j > i; j--)
                            {
                                topKTuples[j] = topKTuples[j - 1];
                            }
                            topKTuples[i] = new tuple <int, double>(int.Parse(reader["id"].ToString()), simScore);
                            break;
                        }
                    }

                    if (topKTuples[i].second < simScore)
                    {
                        for (int j = k - 1; j > i; j--)
                        {
                            topKTuples[j] = topKTuples[j - 1];
                        }
                        topKTuples[i] = new tuple <int, double>(int.Parse(reader["id"].ToString()), simScore);
                        break;
                    }
                }
            }

            return(topKTuples);
        }