ZStream is used to store user data to compress/decompress.
Example #1
0
            internal static int Process(zlib.ZStream /*!*/ zst, MutableString str, zlib.FlushStrategy flush, bool compress,
                                        out MutableString /*!*/ result, ref MutableString trailingUncompressedData)
            {
                result = MutableString.CreateBinary();

                // add previously compressed data to the output:
                if (zst.next_out != null)
                {
                    result.Append(zst.next_out, 0, zst.next_out_index);
                }

                int err;
                int bufferStart = zst.next_out_index;

                err = Process(zst, str, flush, compress, ref trailingUncompressedData);
                result.Append(zst.next_out, bufferStart, zst.next_out_index - bufferStart);

                if (err == Z_STREAM_END && (flush == zlib.FlushStrategy.Z_FINISH || str == null))
                {
                    err = compress ? zst.deflateEnd() : zst.inflateEnd();
                }

                zst.next_out       = null;
                zst.next_out_index = 0;
                zst.avail_out      = 0;

                return(err);
            }
Example #2
0
            internal static int Process(zlib.ZStream /*!*/ zst, MutableString str, zlib.FlushStrategy flush, bool compress,
                                        ref MutableString trailingUncompressedData)
            {
                if (str == null)
                {
                    str   = MutableString.FrozenEmpty;
                    flush = zlib.FlushStrategy.Z_FINISH;
                }
                else if (str.Length == 0 && flush == NO_FLUSH)
                {
                    return(Z_OK);
                }

                // data still available from previous input:
                if (zst.avail_in > 0)
                {
                    int err = Process(zst, flush, compress, ref trailingUncompressedData);

                    // double flush:
                    if (compress && flush != zlib.FlushStrategy.Z_FINISH && err == (int)zlib.ZLibResultCode.Z_DATA_ERROR)
                    {
                        return(Z_OK);
                    }

                    // append new input to the current input:
                    if (err != Z_OK && err != Z_STREAM_END)
                    {
                        byte[] currentInput = zst.next_in;
                        byte[] newInput     = str.ToByteArray();

                        int minLength = zst.next_in_index + zst.avail_in + newInput.Length;
                        if (currentInput.Length < minLength)
                        {
                            Array.Resize(ref currentInput, Math.Max(currentInput.Length * 2, minLength));
                        }

                        Buffer.BlockCopy(newInput, 0, currentInput, zst.next_in_index + zst.avail_in, newInput.Length);
                        zst.next_in   = currentInput;
                        zst.avail_in += newInput.Length;

                        return(err);
                    }
                }

                if (str != null)
                {
                    byte[] input = str.ToByteArray();
                    zst.next_in       = input;
                    zst.next_in_index = 0;
                    zst.avail_in      = input.Length;
                }
                else
                {
                    zst.avail_in = 0;
                }

                return(Process(zst, flush, compress, ref trailingUncompressedData));
            }
Example #3
0
            private static zlib.ZStream CreateDeflateStream(int level, int windowBits, int memLevel, int strategy)
            {
                var stream = new zlib.ZStream();
                int result = stream.deflateInit(level, windowBits, memLevel, (zlib.CompressionStrategy)strategy);

                if (result != Z_OK)
                {
                    throw MakeError(result, null);
                }

                return(stream);
            }
Example #4
0
            private static zlib.ZStream CreateInflateStream(int windowBits)
            {
                var zst    = new zlib.ZStream();
                int result = zst.inflateInit(windowBits);

                if (result != Z_OK)
                {
                    throw MakeError(result, zst.msg);
                }

                return(zst);
            }
Example #5
0
        internal Compress(int level, int method, int wbits, int memlevel, int strategy)
        {
            zst = new ZStream();
            int err = zst.deflateInit(level, wbits);
            switch(err)
            {
                case ZlibModule.Z_OK:
                    break;

                case ZlibModule.Z_STREAM_ERROR:
                    throw PythonOps.ValueError("Invalid initialization option");

                default:
                    throw ZlibModule.zlib_error(this.zst, err, "while creating compression object");
            }
        }
Example #6
0
            internal static MutableString /*!*/ InflateString(MutableString /*!*/ str)
            {
                zlib.ZStream zst = CreateInflateStream();

                // uncompressed data are ignored:
                MutableString trailingUncompressedData = null;
                MutableString uncompressed;

                int result = Process(zst, str, zlib.FlushStrategy.Z_SYNC_FLUSH, decompress, out uncompressed, ref trailingUncompressedData);

                if (result != Z_OK && result != Z_STREAM_END)
                {
                    throw MakeError(result, zst.msg);
                }

                return(uncompressed);
            }
Example #7
0
        /// <summary>
        /// Builds dynamic trees
        /// </summary>
        internal static int inflate_trees_dynamic(int nl, int nd, int[] c, int[] bl, int[] bd, int[] tl, int[] td, int[] hp, ZStream z)
        {
            int r;
            int[] hn = new int[1]; // hufts used in space
            int[] v = new int[288]; // work area for huft_build

            // build literal/length tree
            r = huft_build(c, 0, nl, 257, InfTreeUtil.cplens, InfTreeUtil.cplext, tl, bl, hp, hn, v);
            if (r != (int)ZLibResultCode.Z_OK || bl[0] == 0)
            {
                if (r == (int)ZLibResultCode.Z_DATA_ERROR)
                {
                    z.msg = "oversubscribed literal/length tree";
                }
                else if (r != (int)ZLibResultCode.Z_DATA_ERROR)
                {
                    z.msg = "incomplete literal/length tree";
                    r = (int)ZLibResultCode.Z_DATA_ERROR;
                }
                return r;
            }

            // build distance tree
            r = huft_build(c, nl, nd, 0, InfTreeUtil.cpdist, InfTreeUtil.cpdext, td, bd, hp, hn, v);

            if (r != (int)ZLibResultCode.Z_OK || (bd[0] == 0 && nl > 257))
            {
                if (r == (int)ZLibResultCode.Z_DATA_ERROR)
                {
                    z.msg = "oversubscribed distance tree";
                }
                else if (r == (int)ZLibResultCode.Z_DATA_ERROR)
                {
                    z.msg = "incomplete distance tree";
                    r = (int)ZLibResultCode.Z_DATA_ERROR;
                }
                else if (r != (int)ZLibResultCode.Z_DATA_ERROR)
                {
                    z.msg = "empty distance tree with lengths";
                    r = (int)ZLibResultCode.Z_DATA_ERROR;
                }
                return r;
            }

            return (int)ZLibResultCode.Z_OK;
        }
Example #8
0
            public static MutableString /*!*/ DeflateString(RubyClass /*!*/ self,
                                                            [DefaultProtocol, NotNull] MutableString /*!*/ str,
                                                            [DefaultParameterValue(DEFAULT_COMPRESSION)] int level)
            {
                zlib.ZStream  zst = CreateDeflateStream(level);
                MutableString compressed;
                MutableString trailingUncompressedData = null;

                int result = Process(zst, str, zlib.FlushStrategy.Z_FINISH, compress, out compressed, ref trailingUncompressedData);

                if (result != Z_OK)
                {
                    throw MakeError(result, zst.msg);
                }

                return(compressed);
            }
Example #9
0
        internal Decompress(int wbits)
        {
            zst = new ZStream();
            int err = zst.inflateInit(wbits);
            switch(err)
            {
                case ZlibModule.Z_OK:
                    break;

                case ZlibModule.Z_STREAM_ERROR:
                    throw PythonOps.ValueError("Invalid initialization option");

                default:
                    throw ZlibModule.zlib_error(this.zst, err, "while creating decompression object");
            }

            _unused_data = string.Empty;
            _unconsumed_tail = string.Empty;
        }
Example #10
0
        /// <summary>
        /// Build trees
        /// </summary>
        internal static int inflate_trees_bits(int[] c, int[] bb, int[] tb, int[] hp, ZStream z)
        {
            int r;
            int[] hn = new int[1]; // hufts used in space
            int[] v = new int[19]; // work area for huft_build

            r = huft_build(c, 0, 19, 19, null, null, tb, bb, hp, hn, v);

            if (r == (int)ZLibResultCode.Z_DATA_ERROR)
            {
                z.msg = "oversubscribed dynamic bit lengths tree";
            }
            else if (r == (int)ZLibResultCode.Z_DATA_ERROR || bb[0] == 0)
            {
                z.msg = "incomplete dynamic bit lengths tree";
                r = (int)ZLibResultCode.Z_DATA_ERROR;
            }
            return r;
        }
Example #11
0
 public static object TotalOut(ZStream/*!*/ self)
 {
     return Protocols.Normalize(self.GetStream().total_out);
 }
Example #12
0
 public static void Reset(ZStream/*!*/ self)
 {
     var zst = self.GetStream();
     if (zst.IsInitialized) {
         int err = zst.reset();
         Debug.Assert(err == Z_OK);
     }
 }
Example #13
0
 public static int GetAvailOut(ZStream/*!*/ self)
 {
     return self.GetStream().avail_out;
 }
Example #14
0
 public static MutableString Finish(ZStream/*!*/ self)
 {
     return self.Finish();
 }
Example #15
0
 public static void Close(ZStream/*!*/ self)
 {
     if (self._stream != null) {
         self.Close();
         self._stream = null;
     }
 }
Example #16
0
 public static object Adler(ZStream/*!*/ self)
 {
     return Protocols.Normalize(self.GetStream().adler);
 }
Example #17
0
        /// <summary>
        /// Block processing method
        /// </summary>
        /// <param name="s">An instance of the InfBlocks class</param>
        /// <param name="z">A ZStream object</param>
        /// <param name="r">A result code</param>
        internal int proc(InfBlocks s, ZStream z, int r)
        {
            int j; // temporary storage
             //int[] t; // temporary pointer
            int tindex; // temporary pointer
            int e; // extra bits or operation
            int b = 0; // bit buffer
            int k = 0; // bits in bit buffer
            int p = 0; // input data pointer
            int n; // bytes available there
            int q; // output Window WritePos pointer
            int m; // bytes to End of Window or ReadPos pointer
            int f; // pointer to copy strings from

            // copy input/output information to locals (UPDATE macro restores)
            p = z.next_in_index; n = z.avail_in; b = s.BitB; k = s.BitK;
            q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

            // process input and output based on current state
            while (true)
            {
                switch (mode)
                {

                    // waiting for "i:"=input, "o:"=output, "x:"=nothing
                    case  InflateCodesMode.START:  // x: set up for  InflateCodesMode.LEN
                        if (m >= 258 && n >= 10)
                        {

                            s.BitB = b; s.BitK = k;
                            z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                            s.WritePos = q;
                            r = inflate_fast(lbits, dbits, ltree, ltree_index, dtree, dtree_index, s, z);

                            p = z.next_in_index; n = z.avail_in; b = s.BitB; k = s.BitK;
                            q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

                            if (r != (int)ZLibResultCode.Z_OK)
                            {
                                mode = r == (int)ZLibResultCode.Z_STREAM_END? InflateCodesMode.WASH: InflateCodesMode.BADCODE;
                                break;
                            }
                        }
                        need = lbits;
                        tree = ltree;
                        tree_index = ltree_index;

                        mode =  InflateCodesMode.LEN;
                        goto case  InflateCodesMode.LEN;

                    case  InflateCodesMode.LEN:  // i: get length/literal/eob next
                        j = need;

                        while (k < (j))
                        {
                            if (n != 0)
                                r = (int)ZLibResultCode.Z_OK;
                            else
                            {

                                s.BitB = b; s.BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                s.WritePos = q;
                                return s.inflate_flush(z, r);
                            }
                            n--;
                            b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        tindex = (tree_index + (b & ZLibUtil.inflate_mask[j])) * 3;

                        b = ZLibUtil.URShift(b, (tree[tindex + 1]));
                        k -= (tree[tindex + 1]);

                        e = tree[tindex];

                        if (e == 0)
                        {
                            // literal
                            lit = tree[tindex + 2];
                            mode =  InflateCodesMode.LIT;
                            break;
                        }
                        if ((e & 16) != 0)
                        {
                            // length
                            get_Renamed = e & 15;
                            count = tree[tindex + 2];
                            mode =  InflateCodesMode.LENEXT;
                            break;
                        }
                        if ((e & 64) == 0)
                        {
                            // next table
                            need = e;
                            tree_index = tindex / 3 + tree[tindex + 2];
                            break;
                        }
                        if ((e & 32) != 0)
                        {
                            // End of block
                            mode =  InflateCodesMode.WASH;
                            break;
                        }
                        mode =  InflateCodesMode.BADCODE; // invalid code
                        z.msg = "invalid literal/length code";
                        r = (int)ZLibResultCode.Z_DATA_ERROR;

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;
                        return s.inflate_flush(z, r);

                    case  InflateCodesMode.LENEXT:  // i: getting length extra (have base)
                        j = get_Renamed;

                        while (k < (j))
                        {
                            if (n != 0)
                                r = (int)ZLibResultCode.Z_OK;
                            else
                            {

                                s.BitB = b; s.BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                s.WritePos = q;
                                return s.inflate_flush(z, r);
                            }
                            n--; b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        count += (b & ZLibUtil.inflate_mask[j]);

                        b >>= j;
                        k -= j;

                        need = dbits;
                        tree = dtree;
                        tree_index = dtree_index;
                        mode =  InflateCodesMode.DIST;
                        goto case  InflateCodesMode.DIST;

                    case  InflateCodesMode.DIST:  // i: get distance next
                        j = need;

                        while (k < (j))
                        {
                            if (n != 0)
                                r = (int)ZLibResultCode.Z_OK;
                            else
                            {

                                s.BitB = b; s.BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                s.WritePos = q;
                                return s.inflate_flush(z, r);
                            }
                            n--; b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        tindex = (tree_index + (b & ZLibUtil.inflate_mask[j])) * 3;

                        b >>= tree[tindex + 1];
                        k -= tree[tindex + 1];

                        e = (tree[tindex]);
                        if ((e & 16) != 0)
                        {
                            // distance
                            get_Renamed = e & 15;
                            dist = tree[tindex + 2];
                            mode =  InflateCodesMode.DISTEXT;
                            break;
                        }
                        if ((e & 64) == 0)
                        {
                            // next table
                            need = e;
                            tree_index = tindex / 3 + tree[tindex + 2];
                            break;
                        }
                        mode =  InflateCodesMode.BADCODE; // invalid code
                        z.msg = "invalid distance code";
                        r = (int)ZLibResultCode.Z_DATA_ERROR;

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;
                        return s.inflate_flush(z, r);

                    case  InflateCodesMode.DISTEXT:  // i: getting distance extra
                        j = get_Renamed;

                        while (k < (j))
                        {
                            if (n != 0)
                                r = (int)ZLibResultCode.Z_OK;
                            else
                            {

                                s.BitB = b; s.BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                s.WritePos = q;
                                return s.inflate_flush(z, r);
                            }
                            n--; b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        dist += (b & ZLibUtil.inflate_mask[j]);

                        b >>= j;
                        k -= j;

                        mode =  InflateCodesMode.COPY;
                        goto case  InflateCodesMode.COPY;

                    case  InflateCodesMode.COPY:  // o: copying bytes in Window, waiting for space
                        f = q - dist;
                        while (f < 0)
                        {
                            // modulo Window size-"while" instead
                            f += s.End; // of "if" handles invalid distances
                        }
                        while (count != 0)
                        {

                            if (m == 0)
                            {
                                if (q == s.End && s.ReadPos != 0)
                                {
                                    q = 0; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;
                                }
                                if (m == 0)
                                {
                                    s.WritePos = q; r = s.inflate_flush(z, r);
                                    q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

                                    if (q == s.End && s.ReadPos != 0)
                                    {
                                        q = 0; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;
                                    }

                                    if (m == 0)
                                    {
                                        s.BitB = b; s.BitK = k;
                                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                        s.WritePos = q;
                                        return s.inflate_flush(z, r);
                                    }
                                }
                            }

                            s.Window[q++] = s.Window[f++]; m--;

                            if (f == s.End)
                                f = 0;
                            count--;
                        }
                        mode =  InflateCodesMode.START;
                        break;

                    case  InflateCodesMode.LIT:  // o: got literal, waiting for output space
                        if (m == 0)
                        {
                            if (q == s.End && s.ReadPos != 0)
                            {
                                q = 0; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;
                            }
                            if (m == 0)
                            {
                                s.WritePos = q; r = s.inflate_flush(z, r);
                                q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

                                if (q == s.End && s.ReadPos != 0)
                                {
                                    q = 0; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;
                                }
                                if (m == 0)
                                {
                                    s.BitB = b; s.BitK = k;
                                    z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                    s.WritePos = q;
                                    return s.inflate_flush(z, r);
                                }
                            }
                        }
                        r = (int)ZLibResultCode.Z_OK;

                        s.Window[q++] = (byte) lit; m--;

                        mode =  InflateCodesMode.START;
                        break;

                    case  InflateCodesMode.WASH:  // o: got eob, possibly more output
                        if (k > 7)
                        {
                            // return unused byte, if any
                            k -= 8;
                            n++;
                            p--; // can always return one
                        }

                        s.WritePos = q; r = s.inflate_flush(z, r);
                        q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

                        if (s.ReadPos != s.WritePos)
                        {
                            s.BitB = b; s.BitK = k;
                            z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                            s.WritePos = q;
                            return s.inflate_flush(z, r);
                        }
                        mode =  InflateCodesMode.END;
                        goto case  InflateCodesMode.END;

                    case  InflateCodesMode.END:
                        r = (int)ZLibResultCode.Z_STREAM_END;
                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;
                        return s.inflate_flush(z, r);

                    case  InflateCodesMode.BADCODE:  // x: got error

                        r = (int)ZLibResultCode.Z_DATA_ERROR;

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;
                        return s.inflate_flush(z, r);

                    default:
                        r = (int)ZLibResultCode.Z_STREAM_ERROR;

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;
                        return s.inflate_flush(z, r);

                }
            }
        }
Example #18
0
        private IEnumerable <object> StartHeaderSkipping(ZStream z)
        {
            var headerCollector = new List <byte>(FIXED_HEADER_SIZE);

            do
            {
                if (z.avail_in == 0)
                {
                    yield return(false);
                }
                headerCollector.Add(GetNext(z));
            } while (headerCollector.Count < FIXED_HEADER_SIZE);

            var flag = headerCollector[3];

            if (0 != (flag & (byte)HEADER_FLAG.FEXTRA))
            {
                if (z.avail_in == 0)
                {
                    yield return(null);
                }
                var outstandingSize = (int)GetNext(z);
                if (z.avail_in == 0)
                {
                    yield return(null);
                }
                outstandingSize += 256 * GetNext(z);
                do
                {
                    if (z.avail_in == 0)
                    {
                        yield return(null);
                    }
                    GetNext(z);
                } while (--outstandingSize != 0);
            }

            // STATE_NAME
            if (0 != (flag & (byte)HEADER_FLAG.FNAME))
            {
                do
                {
                    if (z.avail_in == 0)
                    {
                        yield return(null);
                    }
                } while (GetNext(z) != 0);
            }

            // STATE_COMMENT:
            if (0 != (flag & (byte)HEADER_FLAG.FCOMMENT))
            {
                do
                {
                    if (z.avail_in == 0)
                    {
                        yield return(null);
                    }
                } while (GetNext(z) != 0);
            }

            // STATE_CRC:
            if (0 != (flag & (byte)HEADER_FLAG.FHCRC))
            {
                var outstandingSize = 4;
                do
                {
                    if (z.avail_in == 0)
                    {
                        yield return(null);
                    }
                    GetNext(z);
                } while (--outstandingSize != 0);
            }
        }
Example #19
0
 protected ZStream(RubyClass /*!*/ cls, zlib.ZStream /*!*/ stream)
     : base(cls)
 {
     Debug.Assert(stream != null);
     _stream = stream;
 }
Example #20
0
 /// <summary>
 /// Build fixed trees
 /// </summary>
 internal static int inflate_trees_fixed(int[] bl, int[] bd, int[][] tl, int[][] td, ZStream z)
 {
     bl[0] = InfTreeUtil.fixed_bl;
     bd[0] = InfTreeUtil.fixed_bd;
     tl[0] = InfTreeUtil.fixed_tl;
     td[0] = InfTreeUtil.fixed_td;
     return (int)ZLibResultCode.Z_OK;
 }
Example #21
0
 ///<summary>
 /// Returns true if inflate is currently at the End of a block generated
 /// by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
 /// implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
 /// but removes the length bytes of the resulting empty stored block. When
 /// decompressing, PPP checks that at the End of input packet, inflate is
 /// waiting for these length bytes.
 /// </summary>
 internal int inflateSyncPoint(ZStream z)
 {
     if (z == null || z.istate == null || z.istate.blocks == null)
         return (int)ZLibResultCode.Z_STREAM_ERROR;
     return z.istate.blocks.sync_point();
 }
Example #22
0
        /// <summary>
        /// Inflate synchronization
        /// </summary>
        /// <param name="z">A ZStream object</param>
        /// <returns>Operation result code</returns>
        internal int inflateSync(ZStream z)
        {
            int n; // number of bytes to look at
            int p; // pointer to bytes
            int m; // number of marker bytes found in a row
            long r, w; // temporaries to save _total_in and _total_out

            // set up
            if (z == null || z.istate == null)
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            if (z.istate.mode !=  InflateMode.BAD)
            {
                z.istate.mode =  InflateMode.BAD;
                z.istate.marker = 0;
            }
            if ((n = z.avail_in) == 0)
                return (int)ZLibResultCode.Z_BUF_ERROR;
            p = z.next_in_index;
            m = z.istate.marker;

            // search
            while (n != 0 && m < 4)
            {
                if (z.next_in[p] == ZLibUtil.mark[m])
                {
                    m++;
                }
                else if (z.next_in[p] != 0)
                {
                    m = 0;
                }
                else
                {
                    m = 4 - m;
                }
                p++; n--;
            }

            // restore
            z.total_in += p - z.next_in_index;
            z.next_in_index = p;
            z.avail_in = n;
            z.istate.marker = m;

            // return no joy or set up to restart on a new block
            if (m != 4)
            {
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }
            r = z.total_in; w = z.total_out;
            inflateReset(z);
            z.total_in = r; z.total_out = w;
            z.istate.mode =  InflateMode.BLOCKS;
            return (int)ZLibResultCode.Z_OK;
        }
Example #23
0
        /// <summary>
        /// Fast inflate procedure. Called with number of bytes left to WritePos in Window at least 258
        /// (the maximum string length) and number of input bytes available
        /// at least ten.  The ten bytes are six bytes for the longest length/
        /// distance pair plus four bytes for overloading the bit buffer.
        /// </summary>
        internal int inflate_fast(int bl, int bd, int[] tl, int tl_index, int[] td, int td_index, InfBlocks s, ZStream z)
        {
            int t; // temporary pointer
            int[] tp; // temporary pointer
            int tp_index; // temporary pointer
            int e; // extra bits or operation
            int b; // bit buffer
            int k; // bits in bit buffer
            int p; // input data pointer
            int n; // bytes available there
            int q; // output Window WritePos pointer
            int m; // bytes to End of Window or ReadPos pointer
            int ml; // mask for literal/length tree
            int md; // mask for distance tree
            int c; // bytes to copy
            int d; // distance back to copy from
            int r; // copy source pointer

            // load input, output, bit values
            p = z.next_in_index; n = z.avail_in; b = s.BitB; k = s.BitK;
            q = s.WritePos; m = q < s.ReadPos?s.ReadPos - q - 1:s.End - q;

            // initialize masks
            ml = ZLibUtil.inflate_mask[bl];
            md = ZLibUtil.inflate_mask[bd];

            // do until not enough input or output space for fast loop
            do
            {
                // assume called with m >= 258 && n >= 10
                // get literal/length code
                while (k < (20))
                {
                    // max bits for literal/length code
                    n--;
                    b |= (z.next_in[p++] & 0xff) << k; k += 8;
                }

                t = b & ml;
                tp = tl;
                tp_index = tl_index;
                if ((e = tp[(tp_index + t) * 3]) == 0)
                {
                    b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]);

                    s.Window[q++] = (byte) tp[(tp_index + t) * 3 + 2];
                    m--;
                    continue;
                }
                do
                {

                    b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]);

                    if ((e & 16) != 0)
                    {
                        e &= 15;
                        c = tp[(tp_index + t) * 3 + 2] + ((int) b & ZLibUtil.inflate_mask[e]);

                        b >>= e; k -= e;

                        // decode distance base of block to copy
                        while (k < (15))
                        {
                            // max bits for distance code
                            n--;
                            b |= (z.next_in[p++] & 0xff) << k; k += 8;
                        }

                        t = b & md;
                        tp = td;
                        tp_index = td_index;
                        e = tp[(tp_index + t) * 3];

                        do
                        {

                            b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]);

                            if ((e & 16) != 0)
                            {
                                // get extra bits to add to distance base
                                e &= 15;
                                while (k < (e))
                                {
                                    // get extra bits (up to 13)
                                    n--;
                                    b |= (z.next_in[p++] & 0xff) << k; k += 8;
                                }

                                d = tp[(tp_index + t) * 3 + 2] + (b & ZLibUtil.inflate_mask[e]);

                                b >>= (e); k -= (e);

                                // do the copy
                                m -= c;
                                if (q >= d)
                                {
                                    // offset before dest
                                    //  just copy
                                    r = q - d;
                                    if (q - r > 0 && 2 > (q - r))
                                    {
                                        s.Window[q++] = s.Window[r++]; c--; // minimum count is three,
                                        s.Window[q++] = s.Window[r++]; c--; // so unroll loop a little
                                    }
                                    else
                                    {
                                        Array.Copy(s.Window, r, s.Window, q, 2);
                                        q += 2; r += 2; c -= 2;
                                    }
                                }
                                else
                                {
                                    // else offset after destination
                                    r = q - d;
                                    do
                                    {
                                        r += s.End; // force pointer in Window
                                    }
                                    while (r < 0); // covers invalid distances
                                    e = s.End - r;
                                    if (c > e)
                                    {
                                        // if source crosses,
                                        c -= e; // wrapped copy
                                        if (q - r > 0 && e > (q - r))
                                        {
                                            do
                                            {
                                                s.Window[q++] = s.Window[r++];
                                            }
                                            while (--e != 0);
                                        }
                                        else
                                        {
                                            Array.Copy(s.Window, r, s.Window, q, e);
                                            q += e; r += e; e = 0;
                                        }
                                        r = 0; // copy rest from start of Window
                                    }
                                }

                                // copy all or what's left
                                if (q - r > 0 && c > (q - r))
                                {
                                    do
                                    {
                                        s.Window[q++] = s.Window[r++];
                                    }
                                    while (--c != 0);
                                }
                                else
                                {
                                    Array.Copy(s.Window, r, s.Window, q, c);
                                    q += c; r += c; c = 0;
                                }
                                break;
                            }
                            else if ((e & 64) == 0)
                            {
                                t += tp[(tp_index + t) * 3 + 2];
                                t += (b & ZLibUtil.inflate_mask[e]);
                                e = tp[(tp_index + t) * 3];
                            }
                            else
                            {
                                z.msg = "invalid distance code";

                                c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3);

                                s.BitB = b; s.BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                s.WritePos = q;

                                return (int)ZLibResultCode.Z_DATA_ERROR;
                            }
                        }
                        while (true);
                        break;
                    }

                    if ((e & 64) == 0)
                    {
                        t += tp[(tp_index + t) * 3 + 2];
                        t += (b & ZLibUtil.inflate_mask[e]);
                        if ((e = tp[(tp_index + t) * 3]) == 0)
                        {

                            b >>= (tp[(tp_index + t) * 3 + 1]); k -= (tp[(tp_index + t) * 3 + 1]);

                            s.Window[q++] = (byte) tp[(tp_index + t) * 3 + 2];
                            m--;
                            break;
                        }
                    }
                    else if ((e & 32) != 0)
                    {

                        c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3);

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;

                        return (int)ZLibResultCode.Z_STREAM_END;
                    }
                    else
                    {
                        z.msg = "invalid literal/length code";

                        c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3);

                        s.BitB = b; s.BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        s.WritePos = q;

                        return (int)ZLibResultCode.Z_DATA_ERROR;
                    }
                }
                while (true);
            }
            while (m >= 258 && n >= 10);

            // not enough input or output--restore pointers and return
            c = z.avail_in - n; c = (k >> 3) < c?k >> 3:c; n += c; p -= c; k -= (c << 3);

            s.BitB = b; s.BitK = k;
            z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
            s.WritePos = q;

            return (int)ZLibResultCode.Z_OK;
        }
Example #24
0
 private byte GetNext(ZStream z)
 {
     z.avail_in--;
     z.total_in++;
     return(z.next_in[z.next_in_index++]);
 }
Example #25
0
        /// <summary>
        /// Runs inflate algorithm
        /// </summary>
        /// <param name="z">A ZStream object</param>
        /// <param name="flush">Flush strategy</param>
        /// <returns>Operation result code</returns>
        internal int inflate(ZStream z, FlushStrategy flush)
        {
            int r;
            int b;

            int internalFlush = (int)flush;

            int res_temp;

            if (z == null || z.istate == null || z.next_in == null)
            {
                return((int)ZLibResultCode.Z_STREAM_ERROR);
            }
            res_temp = internalFlush == (int)FlushStrategy.Z_FINISH ? (int)ZLibResultCode.Z_BUF_ERROR : (int)ZLibResultCode.Z_OK;
            r        = (int)ZLibResultCode.Z_BUF_ERROR;

            if (detectHeader)
            {
                if (z.avail_in == 0)
                {
                    return(r);
                }
                if (z.next_in[z.next_in_index] == 0x1F)
                {
                    gzipHeaderRemover = GzipHeader.CreateRemover(z);
                }
                detectHeader = false;
            }

            if (gzipHeaderRemover != null)
            {
                if (z.avail_in == 0)
                {
                    return(r);
                }
                if (gzipHeaderRemover.MoveNext())
                {
                    return(r);
                }
                gzipHeaderRemover         = null;
                z.istate.mode             = InflateMode.BLOCKS;
                z.istate.blocks.needCheck = false;
                nowrap = 1;
            }

            while (true)
            {
                switch (z.istate.mode)
                {
                case  InflateMode.METHOD:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    if (((z.istate.method = z.next_in[z.next_in_index++]) & 0xf) != ZLibUtil.Z_DEFLATED)
                    {
                        z.istate.mode   = InflateMode.BAD;
                        z.msg           = "unknown compression method";
                        z.istate.marker = 5;                                 // can't try inflateSync
                        break;
                    }
                    if ((z.istate.method >> 4) + 8 > z.istate.wbits)
                    {
                        z.istate.mode   = InflateMode.BAD;
                        z.msg           = "invalid Window size";
                        z.istate.marker = 5;                                 // can't try inflateSync
                        break;
                    }
                    z.istate.mode = InflateMode.FLAG;
                    goto case InflateMode.FLAG;

                case  InflateMode.FLAG:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    b = (z.next_in[z.next_in_index++]) & 0xff;

                    if ((((z.istate.method << 8) + b) % 31) != 0)
                    {
                        z.istate.mode   = InflateMode.BAD;
                        z.msg           = "incorrect header check";
                        z.istate.marker = 5;                                 // can't try inflateSync
                        break;
                    }

                    if ((b & ZLibUtil.PRESET_DICT) == 0)
                    {
                        z.istate.mode = InflateMode.BLOCKS;
                        break;
                    }
                    z.istate.mode = InflateMode.DICT4;
                    goto case InflateMode.DICT4;

                case  InflateMode.DICT4:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need = ((long)(z.next_in[z.next_in_index++] & 0xff) << 24) & unchecked ((int)0xff000000L);
                    z.istate.mode = InflateMode.DICT3;
                    goto case InflateMode.DICT3;

                case  InflateMode.DICT3:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (((long)(z.next_in[z.next_in_index++] & 0xff) << 16) & 0xff0000L);
                    z.istate.mode  = InflateMode.DICT2;
                    goto case InflateMode.DICT2;

                case  InflateMode.DICT2:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (((long)(z.next_in[z.next_in_index++] & 0xff) << 8) & 0xff00L);
                    z.istate.mode  = InflateMode.DICT1;
                    goto case InflateMode.DICT1;

                case  InflateMode.DICT1:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (z.next_in[z.next_in_index++] & 0xffL);
                    z.adler        = z.istate.need;
                    z.istate.mode  = InflateMode.DICT0;
                    return((int)ZLibResultCode.Z_NEED_DICT);

                case  InflateMode.DICT0:
                    z.istate.mode   = InflateMode.BAD;
                    z.msg           = "need dictionary";
                    z.istate.marker = 0;                             // can try inflateSync
                    return((int)ZLibResultCode.Z_STREAM_ERROR);

                case  InflateMode.BLOCKS:
                    r = z.istate.blocks.proc(z, r);
                    if (r == (int)ZLibResultCode.Z_DATA_ERROR)
                    {
                        z.istate.mode   = InflateMode.BAD;
                        z.istate.marker = 0;                                 // can try inflateSync
                        break;
                    }
                    if (r == (int)ZLibResultCode.Z_OK)
                    {
                        r = res_temp;
                    }
                    if (r != (int)ZLibResultCode.Z_STREAM_END)
                    {
                        return(r);
                    }
                    r = res_temp;
                    z.istate.blocks.reset(z, z.istate.was);
                    if (z.istate.nowrap != 0)
                    {
                        z.istate.mode = InflateMode.DONE;
                        break;
                    }
                    z.istate.mode = InflateMode.CHECK4;
                    goto case InflateMode.CHECK4;

                case  InflateMode.CHECK4:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need = ((z.next_in[z.next_in_index++] & 0xff) << 24) & unchecked ((int)0xff000000L);
                    z.istate.mode = InflateMode.CHECK3;
                    goto case InflateMode.CHECK3;

                case  InflateMode.CHECK3:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (((z.next_in[z.next_in_index++] & 0xff) << 16) & 0xff0000L);
                    z.istate.mode  = InflateMode.CHECK2;
                    goto case InflateMode.CHECK2;

                case  InflateMode.CHECK2:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (((z.next_in[z.next_in_index++] & 0xff) << 8) & 0xff00L);
                    z.istate.mode  = InflateMode.CHECK1;
                    goto case InflateMode.CHECK1;

                case  InflateMode.CHECK1:

                    if (z.avail_in == 0)
                    {
                        return(r);
                    }
                    r = res_temp;

                    z.avail_in--; z.total_in++;
                    z.istate.need += (z.next_in[z.next_in_index++] & 0xffL);

                    if (unchecked (((int)(z.istate.was[0])) != ((int)(z.istate.need))))
                    {
                        z.istate.mode   = InflateMode.BAD;
                        z.msg           = "incorrect data check";
                        z.istate.marker = 5;                                 // can't try inflateSync
                        break;
                    }

                    z.istate.mode = InflateMode.DONE;
                    goto case InflateMode.DONE;

                case  InflateMode.DONE:
                    return((int)ZLibResultCode.Z_STREAM_END);

                case  InflateMode.BAD:
                    return((int)ZLibResultCode.Z_DATA_ERROR);

                default:
                    return((int)ZLibResultCode.Z_STREAM_ERROR);
                }
            }
        }
Example #26
0
            private static int Process(zlib.ZStream /*!*/ zst, zlib.FlushStrategy flush, bool compress,
                                       ref MutableString trailingUncompressedData)
            {
                if (zst.next_out == null)
                {
                    zst.next_out       = new byte[DEFAULTALLOC];
                    zst.next_out_index = 0;
                    zst.avail_out      = zst.next_out.Length;
                }

                int result = compress ? zst.deflate(flush) : zst.inflate(flush);

                while (result == Z_OK && zst.avail_out == 0)
                {
                    byte[] output    = zst.next_out;
                    int    oldLength = output.Length;

                    Array.Resize(ref output, oldLength * 2);

                    zst.next_out  = output;
                    zst.avail_out = oldLength;
                    result        = compress ? zst.deflate(flush) : zst.inflate(flush);
                }

                if (!compress && (result == Z_STREAM_END || result == Z_STREAM_ERROR && !zst.IsInitialized))
                {
                    // MRI hack: any data left in the stream are saved into a separate buffer and returned when "finish" is called
                    // This is weird behavior, one would expect the rest of the stream is either ignored or copied to the output buffer.
#if COPY_UNCOMPRESSED_DATA_TO_OUTPUT_BUFFER
                    Debug.Assert(zst.next_in_index + zst.avail_in <= zst.next_in.Length);
                    Debug.Assert(zst.next_out_index + zst.avail_out <= zst.next_out.Length);

                    if (zst.avail_in > zst.avail_out)
                    {
                        byte[] output    = zst.next_out;
                        int    oldLength = output.Length;

                        Array.Resize(ref output, Math.Max(zst.next_out_index + zst.avail_in, oldLength * 2));
                        zst.next_out = output;
                    }

                    Buffer.BlockCopy(zst.next_in, zst.next_in_index, zst.next_out, zst.next_out_index, zst.avail_in);

                    // MRI subtracts till 0 is reached:
                    zst.avail_out       = Math.Max(zst.avail_out - zst.avail_in, 0);
                    zst.next_out_index += zst.avail_in;
                    zst.avail_in        = 0;
#else
                    if (trailingUncompressedData == null)
                    {
                        trailingUncompressedData = MutableString.CreateBinary();
                    }

                    trailingUncompressedData.Append(zst.next_in, zst.next_in_index, zst.avail_in);

                    // MRI subtracts till 0 is reached:
                    zst.avail_out = Math.Max(zst.avail_out - zst.avail_in, 0);
                    zst.avail_in  = 0;
#endif
                    result = Z_STREAM_END;
                }

                return(result);
            }
Example #27
0
 public static int AvailIn(ZStream/*!*/ self)
 {
     return self.GetStream().avail_in;
 }
Example #28
0
 /// <summary>
 /// Creates header remover.
 /// As long as header is not completed, call to Remover.MoveNext() returns true and
 /// adjust state of z.
 /// </summary>
 /// <param name="z">Stream where gzip header will appear.</param>
 /// <returns></returns>
 public static IEnumerator <object> CreateRemover(ZStream z)
 {
     return(new GzipHeader().StartHeaderSkipping(z).GetEnumerator());
 }
Example #29
0
 public static int DataType(ZStream/*!*/ self)
 {
     return (int)self.GetStream().Data_type;
 }
Example #30
0
 /// <summary>
 /// Initializes deflate algorithm
 /// </summary>
 /// <param name="strm">ZStream object</param>
 /// <param name="level">Compression level</param>
 /// <returns>Operation result result code</returns>
 internal int deflateInit(ZStream strm, int level)
 {
     return deflateInit(strm, level, ZLibUtil.MAX_WBITS);
 }
Example #31
0
 public static MutableString FlushNextOut(ZStream/*!*/ self)
 {
     throw new NotImplementedError();
 }
Example #32
0
        /// <summary>
        /// Resets the current state of deflate object
        /// </summary>
        internal int deflateReset(ZStream strm)
        {
            strm.total_in = strm.total_out = 0;
            strm.msg = null; //
            strm.Data_type = BlockType.Z_UNKNOWN;

            pending = 0;
            Pending_out = 0;

            if (NoHeader < 0)
            {
                NoHeader = 0; // was set to -1 by deflate(..., Z_FINISH);
            }
            status = (NoHeader != 0) ? DeflateState.BUSY_STATE : DeflateState.INIT_STATE;

            strm.adler = Adler32.GetAdler32Checksum(0, null, 0, 0);

            last_flush = (int)FlushStrategy.Z_NO_FLUSH;

            tr_init();
            lm_init();
            return (int)ZLibResultCode.Z_OK;
        }
Example #33
0
 public static bool IsClosed(ZStream/*!*/ self)
 {
     var zst = self._stream;
     return zst == null || !zst.IsInitialized;
 }
Example #34
0
        /// <summary>
        /// Sets deflate dictionary
        /// </summary>
        internal int deflateSetDictionary(ZStream strm, byte[] dictionary, int dictLength)
        {
            int length = dictLength;
            int index = 0;

            if (dictionary == null || status != DeflateState.INIT_STATE)
                return (int)ZLibResultCode.Z_STREAM_ERROR;

            strm.adler = Adler32.GetAdler32Checksum(strm.adler, dictionary, 0, dictLength);

            if (length < MIN_MATCH)
                return (int)ZLibResultCode.Z_OK;
            if (length > w_size - MIN_LOOKAHEAD)
            {
                length = w_size - MIN_LOOKAHEAD;
                index = dictLength - length; // use the tail of the dictionary
            }
            Array.Copy(dictionary, index, window, 0, length);
            strstart = length;
            block_start = length;

            // Insert all strings in the hash table (except for the last two bytes).
            // s->lookahead stays null, so s->ins_h will be recomputed at the next
            // call of fill_window.

            ins_h = window[0] & 0xff;
            ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask;

            for (int n = 0; n <= length - MIN_MATCH; n++)
            {
                ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
                prev[n & w_mask] = head[ins_h];
                head[ins_h] = (short)n;
            }
            return (int)ZLibResultCode.Z_OK;
        }
Example #35
0
            public static int SetAvailOut(ZStream/*!*/ self, int size)
            {
                long newBufferSize;
                var zst = self.GetStream();
                if (size < 0 || (newBufferSize = zst.next_out_index + size) > Int32.MaxValue) {
                    throw RubyExceptions.CreateArgumentError("negative string size (or size too big)");
                }

                int old = zst.avail_out;

                // Make sure we have enough space in the buffer.
                // We could keep the buffer larger but since users are calling
                // this API explicitly they probably want to resize the buffer.
                var output = zst.next_out;
                Array.Resize(ref output, (int)newBufferSize);
                zst.next_out = output;
                zst.avail_out = size;
                return old;
            }
Example #36
0
        /// <summary>
        /// copy as much as possible from the sliding Window to the output area
        /// </summary>
        internal int inflate_flush(ZStream z, int r)
        {
            int n;
            int p;
            int q;

            // local copies of source and destination pointers
            p = z.next_out_index;
            q = ReadPos;

            // compute number of bytes to copy as far as End of Window
            n = (int)((q <= WritePos?WritePos:End) - q);
            if (n > z.avail_out)
            {
                n = z.avail_out;
            }
            if (n != 0 && r == (int)ZLibResultCode.Z_BUF_ERROR)
            {
                r = (int)ZLibResultCode.Z_OK;
            }

            // update counters
            z.avail_out -= n;
            z.total_out += n;

            // update check information
            if (this.needCheck)
            {
                z.adler = check = Adler32.GetAdler32Checksum(check, Window, q, n);
            }

            // copy as far as End of Window
            Array.Copy(Window, q, z.next_out, p, n);
            p += n;
            q += n;

            // see if more to copy at beginning of Window
            if (q == End)
            {
                // wrap pointers
                q = 0;
                if (WritePos == End)
                {
                    WritePos = 0;
                }

                // compute bytes to copy
                n = WritePos - q;
                if (n > z.avail_out)
                {
                    n = z.avail_out;
                }
                if (n != 0 && r == (int)ZLibResultCode.Z_BUF_ERROR)
                {
                    r = (int)ZLibResultCode.Z_OK;
                }

                // update counters
                z.avail_out -= n;
                z.total_out += n;

                // update check information
                if (this.needCheck)
                {
                    z.adler = check = Adler32.GetAdler32Checksum(check, Window, q, n);
                }

                // copy
                Array.Copy(Window, q, z.next_out, p, n);
                p += n;
                q += n;
            }

            // update pointers
            z.next_out_index = p;
            ReadPos          = q;

            // done
            return(r);
        }
Example #37
0
 /// <summary>
 /// Deflate algorithm initialization
 /// </summary>
 /// <param name="strm">ZStream object</param>
 /// <param name="level">Compression level</param>
 /// <param name="bits">Window bits</param>
 /// <returns>A result code</returns>
 internal int deflateInit(ZStream strm, int level, int bits)
 {
     return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL, CompressionStrategy.Z_DEFAULT_STRATEGY);
 }
Example #38
0
        /// <summary>
        /// Sets dictionary for the inflate operation
        /// </summary>
        /// <param name="z">A ZStream object</param>
        /// <param name="dictionary">An array of byte - dictionary</param>
        /// <param name="dictLength">Dictionary length</param>
        /// <returns>Operation result code</returns>
        internal int inflateSetDictionary(ZStream z, byte[] dictionary, int dictLength)
        {
            int index = 0;
            int length = dictLength;
            if (z == null || z.istate == null || z.istate.mode !=  InflateMode.DICT0)
                return (int)ZLibResultCode.Z_STREAM_ERROR;

            if (Adler32.GetAdler32Checksum(1L, dictionary, 0, dictLength) != z.adler)
            {
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }

            z.adler = Adler32.GetAdler32Checksum(0, null, 0, 0);

            if (length >= (1 << z.istate.wbits))
            {
                length = (1 << z.istate.wbits) - 1;
                index = dictLength - length;
            }
            z.istate.blocks.set_dictionary(dictionary, index, length);
            z.istate.mode =  InflateMode.BLOCKS;
            return (int)ZLibResultCode.Z_OK;
        }
Example #39
0
        /// <summary>
        /// Deflate algorithm initialization
        /// </summary>
        /// <param name="strm">ZStream object</param>
        /// <param name="level">Compression level</param>
        /// <param name="method">Compression method</param>
        /// <param name="windowBits">Window bits</param>
        /// <param name="memLevel">Memory level</param>
        /// <param name="strategy">Compression strategy</param>
        /// <returns>Operation result code</returns>
        internal int deflateInit2(ZStream strm, int level, int method, int windowBits, int memLevel, CompressionStrategy strategy)
        {
            int noheader = 0;

            strm.msg = null;

            if (level == Z_DEFAULT_COMPRESSION)
                level = 6;

            if (windowBits < 0)
            {
                // undocumented feature: suppress zlib header
                noheader = 1;
                windowBits = -windowBits;
            }

            if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > CompressionStrategy.Z_HUFFMAN_ONLY)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            strm.dstate = (Deflate)this;

            this.NoHeader = noheader;
            w_bits = windowBits;
            w_size = 1 << w_bits;
            w_mask = w_size - 1;

            hash_bits = memLevel + 7;
            hash_size = 1 << hash_bits;
            hash_mask = hash_size - 1;
            hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH);

            window = new byte[w_size * 2];
            prev = new short[w_size];
            head = new short[hash_size];

            lit_bufsize = 1 << (memLevel + 6); // 16K elements by default

            // We overlay Pending_buf and d_buf+l_buf. This works since the average
            // output size for (length,distance) codes is <= 24 bits.
            Pending_buf = new byte[lit_bufsize * 4];
            pending_buf_size = lit_bufsize * 4;

            d_buf = lit_bufsize;
            l_buf = (1 + 2) * lit_bufsize;

            this.level = level;

            this.strategy = strategy;
            this.method = (byte)method;

            return deflateReset(strm);
        }
Example #40
0
 /// <summary>
 /// Constructor which takes literal, distance trees, corresponding bites decoded for branches and a ZStream object 
 /// </summary>   
 internal InfCodes(int bl, int bd, int[] tl, int[] td, ZStream z)
 {
     mode =  InflateCodesMode.START;
     lbits = (byte) bl;
     dbits = (byte) bd;
     ltree = tl;
     ltree_index = 0;
     dtree = td;
     dtree_index = 0;
 }
Example #41
0
        /// <summary>
        /// Sets deflate algorithm parameters
        /// </summary>
        internal int deflateParams(ZStream strm, int level, CompressionStrategy strategy)
        {
            int err = (int)ZLibResultCode.Z_OK;

            if (level == Z_DEFAULT_COMPRESSION)
            {
                level = 6;
            }
            if (level < 0 || level > 9 || strategy < 0 || strategy > CompressionStrategy.Z_HUFFMAN_ONLY)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            if (config_table[this._level].func != config_table[level].func && strm.total_in != 0)
            {
                // Flush the last buffer:
                err = strm.deflate(FlushStrategy.Z_PARTIAL_FLUSH);
            }

            if (this._level != level)
            {
                this._level = level;
                max_lazy_match = config_table[this._level].max_lazy;
                good_match = config_table[this._level].good_length;
                nice_match = config_table[this._level].nice_length;
                max_chain_length = config_table[this._level].max_chain;
            }
            this.strategy = strategy;
            return err;
        }
Example #42
0
 /// <summary>
 /// Frees allocated resources
 /// </summary>
 internal void free(ZStream z)
 {
 }
Example #43
0
        /// <summary>
        /// Performs data compression with the deflate algorithm
        /// </summary>
        internal int deflate(ZStream strm, FlushStrategy f)
        {
            int old_flush;

            int internalFlush = (int)f;

            if (internalFlush > (int)FlushStrategy.Z_FINISH || internalFlush < 0)
            {
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }

            if (strm.next_out == null || (strm.next_in == null && strm.avail_in != 0) || (status == DeflateState.FINISH_STATE && internalFlush != (int)FlushStrategy.Z_FINISH))
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_STREAM_ERROR)];
                return (int)ZLibResultCode.Z_STREAM_ERROR;
            }
            if (strm.avail_out == 0)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }

            this.strm = strm; // just in case
            old_flush = last_flush;
            last_flush = internalFlush;

            // Write the zlib header
            if (status == DeflateState.INIT_STATE)
            {
                int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8;
                int level_flags = ((level - 1) & 0xff) >> 1;

                if (level_flags > 3)
                    level_flags = 3;
                header |= (level_flags << 6);
                if (strstart != 0)
                    header |= PRESET_DICT;
                header += 31 - (header % 31);

                status = DeflateState.BUSY_STATE;
                putShortMSB(header);


                // Save the adler32 of the preset dictionary:
                if (strstart != 0)
                {
                    putShortMSB((int)(ZLibUtil.URShift(strm.adler, 16)));
                    putShortMSB((int)(strm.adler & 0xffff));
                }
                strm.adler = Adler32.GetAdler32Checksum(0, null, 0, 0);
            }

            // Flush as much pending output as possible
            if (pending != 0)
            {
                strm.flush_pending();
                if (strm.avail_out == 0)
                {
                    //System.out.println("  _avail_out==0");
                    // Since _avail_out is 0, deflate will be called again with
                    // more output space, but possibly with both pending and
                    // _avail_in equal to zero. There won't be anything to do,
                    // but this is not an error situation so make sure we
                    // return OK instead of BUF_ERROR at next call of deflate:
                    last_flush = -1;
                    return (int)ZLibResultCode.Z_OK;
                }

                // Make sure there is something to do and avoid duplicate consecutive
                // flushes. For repeated and useless calls with Z_FINISH, we keep
                // returning (int)ZLibResultCode.Z_STREAM_END instead of Z_BUFF_ERROR.
            }
            else if (strm.avail_in == 0 && internalFlush <= old_flush && internalFlush != (int)FlushStrategy.Z_FINISH)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
                return (int)ZLibResultCode.Z_DATA_ERROR;
            }

            // User must not provide more input after the first FINISH:
            if (status == DeflateState.FINISH_STATE && strm.avail_in != 0)
            {
                strm.msg = ZLibUtil.z_errmsg[(int)ZLibResultCode.Z_NEED_DICT - ((int)ZLibResultCode.Z_BUF_ERROR)];
				return (int)ZLibResultCode.Z_DATA_ERROR;
			}
			
			// Start a new block or continue the current one.
			if (strm.avail_in != 0 || lookahead != 0 || (internalFlush != (int)FlushStrategy.Z_NO_FLUSH && status != DeflateState.FINISH_STATE))
			{
				int bstate = - 1;
				switch (config_table[level].func)
				{
					
					case STORED: 
						bstate = deflate_stored(internalFlush);
						break;
					
					case FAST: 
						bstate = deflate_fast(internalFlush);
						break;
					
					case SLOW: 
						bstate = deflate_slow(internalFlush);
						break;
					
					default: 
						break;
					
				}
				
				if (bstate == FinishStarted || bstate == FinishDone)
				{
					status = DeflateState.FINISH_STATE;
				}
				if (bstate == NeedMore || bstate == FinishStarted)
				{
					if (strm.avail_out == 0)
					{
						last_flush = -1; // avoid BUF_ERROR next call, see above
					}
					return (int)ZLibResultCode.Z_OK;
					// If internalFlush != Z_NO_FLUSH && _avail_out == 0, the next call
					// of deflate should use the same internalFlush parameter to make sure
					// that the internalFlush is complete. So we don't have to output an
					// empty block here, this will be done at next call. This also
					// ensures that for a very small output buffer, we emit at most
					// one empty block.
				}
				
				if (bstate == BlockDone)
				{
					if (internalFlush == (int)FlushStrategy.Z_PARTIAL_FLUSH)
					{
						_tr_align();
					}
					else
					{
						// FULL_FLUSH or SYNC_FLUSH
						_tr_stored_block(0, 0, false);
						// For a full internalFlush, this empty block will be recognized
						// as a special marker by inflate_sync().
                        if (internalFlush == (int)FlushStrategy.Z_FULL_FLUSH)
						{
							for (int i = 0; i < hash_size; i++)
							// forget history
								head[i] = 0;
						}
					}
					strm.flush_pending();
					if (strm.avail_out == 0)
					{
						last_flush = -1; // avoid BUF_ERROR at next call, see above
						return (int)ZLibResultCode.Z_OK;
					}
				}
			}
			
			if (internalFlush != (int)FlushStrategy.Z_FINISH)
				return (int)ZLibResultCode.Z_OK;
			if (NoHeader != 0)
				return (int)ZLibResultCode.Z_STREAM_END;
			
			// Write the zlib trailer (adler32)
			putShortMSB((int) (ZLibUtil.URShift(strm.adler, 16)));
			putShortMSB((int) (strm.adler & 0xffff));
			strm.flush_pending();
			
			// If _avail_out is zero, the application will call deflate again
			// to internalFlush the rest.
			NoHeader = - 1; // WritePos the trailer only once!
            return pending != 0 ? (int)ZLibResultCode.Z_OK : (int)ZLibResultCode.Z_STREAM_END;
        }
Example #44
0
        /// <summary>
        /// Block processing functions
        /// </summary>
        internal int proc(ZStream z, int r)
        {
            int t; // temporary storage
            int b; // bit buffer
            int k; // bits in bit buffer
            int p; // input data pointer
            int n; // bytes available there
            int q; // output Window WritePos pointer
            int m; // bytes to End of Window or ReadPos pointer

            // copy input/output information to locals (UPDATE macro restores)
            {
                p = z.next_in_index; n = z.avail_in; b = BitB; k = BitK;
            }
            {
                q = WritePos; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);
            }

            // process input based on current state
            while (true)
            {
                switch (mode)
                {
                case InflateBlockMode.TYPE:

                    while (k < (3))
                    {
                        if (n != 0)
                        {
                            r = (int)ZLibResultCode.Z_OK;
                        }
                        else
                        {
                            BitB        = b; BitK = k;
                            z.avail_in  = n;
                            z.total_in += p - z.next_in_index; z.next_in_index = p;
                            WritePos    = q;
                            return(inflate_flush(z, r));
                        }
                        ;
                        n--;
                        b |= (z.next_in[p++] & 0xff) << k;
                        k += 8;
                    }
                    t    = (int)(b & 7);
                    last = t & 1;

                    switch (ZLibUtil.URShift(t, 1))
                    {
                    case 0:          // stored
                    {
                        b = ZLibUtil.URShift(b, (3)); k -= (3);
                    }
                        t = k & 7;         // go to byte boundary
                        {
                            b = ZLibUtil.URShift(b, (t)); k -= (t);
                        }
                        mode = InflateBlockMode.LENS;         // get length of stored block
                        break;

                    case 1:          // fixed
                    {
                        int[]   bl = new int[1];
                        int[]   bd = new int[1];
                        int[][] tl = new int[1][];
                        int[][] td = new int[1][];

                        InfTree.inflate_trees_fixed(bl, bd, tl, td, z);
                        codes = new InfCodes(bl[0], bd[0], tl[0], td[0], z);
                    }
                        {
                            b = ZLibUtil.URShift(b, (3)); k -= (3);
                        }

                        mode = InflateBlockMode.CODES;
                        break;

                    case 2:          // dynamic
                    {
                        b = ZLibUtil.URShift(b, (3)); k -= (3);
                    }

                        mode = InflateBlockMode.TABLE;
                        break;

                    case 3:          // illegal
                    {
                        b = ZLibUtil.URShift(b, (3)); k -= (3);
                    }
                        mode  = InflateBlockMode.BAD;
                        z.msg = "invalid block type";
                        r     = (int)ZLibResultCode.Z_DATA_ERROR;

                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }
                    break;

                case InflateBlockMode.LENS:

                    while (k < (32))
                    {
                        if (n != 0)
                        {
                            r = (int)ZLibResultCode.Z_OK;
                        }
                        else
                        {
                            BitB        = b; BitK = k;
                            z.avail_in  = n;
                            z.total_in += p - z.next_in_index; z.next_in_index = p;
                            WritePos    = q;
                            return(inflate_flush(z, r));
                        }
                        ;
                        n--;
                        b |= (z.next_in[p++] & 0xff) << k;
                        k += 8;
                    }

                    if (((ZLibUtil.URShift((~b), 16)) & 0xffff) != (b & 0xffff))
                    {
                        mode  = InflateBlockMode.BAD;
                        z.msg = "invalid stored block lengths";
                        r     = (int)ZLibResultCode.Z_DATA_ERROR;

                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }
                    left = (b & 0xffff);
                    b    = k = 0;  // dump bits
                    mode = (left != 0) ? InflateBlockMode.STORED : (last != 0 ? InflateBlockMode.DRY : InflateBlockMode.TYPE);
                    break;

                case InflateBlockMode.STORED:
                    if (n == 0)
                    {
                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }

                    if (m == 0)
                    {
                        if (q == End && ReadPos != 0)
                        {
                            q = 0; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);
                        }
                        if (m == 0)
                        {
                            WritePos = q;
                            r        = inflate_flush(z, r);
                            q        = WritePos; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);
                            if (q == End && ReadPos != 0)
                            {
                                q = 0; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);
                            }
                            if (m == 0)
                            {
                                BitB       = b; BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                WritePos   = q;
                                return(inflate_flush(z, r));
                            }
                        }
                    }
                    r = (int)ZLibResultCode.Z_OK;

                    t = left;
                    if (t > n)
                    {
                        t = n;
                    }
                    if (t > m)
                    {
                        t = m;
                    }
                    Array.Copy(z.next_in, p, Window, q, t);
                    p += t; n -= t;
                    q += t; m -= t;
                    if ((left -= t) != 0)
                    {
                        break;
                    }
                    mode = last != 0 ? InflateBlockMode.DRY : InflateBlockMode.TYPE;
                    break;

                case InflateBlockMode.TABLE:

                    while (k < (14))
                    {
                        if (n != 0)
                        {
                            r = (int)ZLibResultCode.Z_OK;
                        }
                        else
                        {
                            BitB        = b; BitK = k;
                            z.avail_in  = n;
                            z.total_in += p - z.next_in_index; z.next_in_index = p;
                            WritePos    = q;
                            return(inflate_flush(z, r));
                        }
                        ;
                        n--;
                        b |= (z.next_in[p++] & 0xff) << k;
                        k += 8;
                    }

                    table = t = (b & 0x3fff);
                    if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
                    {
                        mode  = InflateBlockMode.BAD;
                        z.msg = "too many length or distance symbols";
                        r     = (int)ZLibResultCode.Z_DATA_ERROR;

                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }
                    t     = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
                    blens = new int[t];
                    {
                        b = ZLibUtil.URShift(b, (14)); k -= (14);
                    }

                    index = 0;
                    mode  = InflateBlockMode.BTREE;
                    goto case InflateBlockMode.BTREE;

                case InflateBlockMode.BTREE:
                    while (index < 4 + (ZLibUtil.URShift(table, 10)))
                    {
                        while (k < (3))
                        {
                            if (n != 0)
                            {
                                r = (int)ZLibResultCode.Z_OK;
                            }
                            else
                            {
                                BitB        = b; BitK = k;
                                z.avail_in  = n;
                                z.total_in += p - z.next_in_index; z.next_in_index = p;
                                WritePos    = q;
                                return(inflate_flush(z, r));
                            }
                            ;
                            n--;
                            b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        blens[ZLibUtil.border[index++]] = b & 7;

                        {
                            b = ZLibUtil.URShift(b, (3)); k -= (3);
                        }
                    }

                    while (index < 19)
                    {
                        blens[ZLibUtil.border[index++]] = 0;
                    }

                    bb[0] = 7;
                    t     = InfTree.inflate_trees_bits(blens, bb, tb, hufts, z);
                    if (t != (int)ZLibResultCode.Z_OK)
                    {
                        r = t;
                        if (r == (int)ZLibResultCode.Z_DATA_ERROR)
                        {
                            blens = null;
                            mode  = InflateBlockMode.BAD;
                        }

                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }

                    index = 0;
                    mode  = InflateBlockMode.DTREE;
                    goto case InflateBlockMode.DTREE;

                case InflateBlockMode.DTREE:
                    while (true)
                    {
                        t = table;
                        if (!(index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f)))
                        {
                            break;
                        }


                        int i, j, c;

                        t = bb[0];

                        while (k < (t))
                        {
                            if (n != 0)
                            {
                                r = (int)ZLibResultCode.Z_OK;
                            }
                            else
                            {
                                BitB        = b; BitK = k;
                                z.avail_in  = n;
                                z.total_in += p - z.next_in_index; z.next_in_index = p;
                                WritePos    = q;
                                return(inflate_flush(z, r));
                            }
                            ;
                            n--;
                            b |= (z.next_in[p++] & 0xff) << k;
                            k += 8;
                        }

                        t = hufts[(tb[0] + (b & ZLibUtil.inflate_mask[t])) * 3 + 1];
                        c = hufts[(tb[0] + (b & ZLibUtil.inflate_mask[t])) * 3 + 2];

                        if (c < 16)
                        {
                            b = ZLibUtil.URShift(b, (t)); k -= (t);
                            blens[index++] = c;
                        }
                        else
                        {
                            // c == 16..18
                            i = c == 18 ? 7 : c - 14;
                            j = c == 18 ? 11 : 3;

                            while (k < (t + i))
                            {
                                if (n != 0)
                                {
                                    r = (int)ZLibResultCode.Z_OK;
                                }
                                else
                                {
                                    BitB        = b; BitK = k;
                                    z.avail_in  = n;
                                    z.total_in += p - z.next_in_index; z.next_in_index = p;
                                    WritePos    = q;
                                    return(inflate_flush(z, r));
                                }
                                ;
                                n--;
                                b |= (z.next_in[p++] & 0xff) << k;
                                k += 8;
                            }

                            b = ZLibUtil.URShift(b, (t)); k -= (t);

                            j += (b & ZLibUtil.inflate_mask[i]);

                            b = ZLibUtil.URShift(b, (i)); k -= (i);

                            i = index;
                            t = table;
                            if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1))
                            {
                                blens = null;
                                mode  = InflateBlockMode.BAD;
                                z.msg = "invalid bit length repeat";
                                r     = (int)ZLibResultCode.Z_DATA_ERROR;

                                BitB       = b; BitK = k;
                                z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                                WritePos   = q;
                                return(inflate_flush(z, r));
                            }

                            c = c == 16 ? blens[i - 1] : 0;
                            do
                            {
                                blens[i++] = c;
                            }while (--j != 0);
                            index = i;
                        }
                    }

                    tb[0] = -1;
                    {
                        int[] bl = new int[1];
                        int[] bd = new int[1];
                        int[] tl = new int[1];
                        int[] td = new int[1];


                        bl[0] = 9;     // must be <= 9 for lookahead assumptions
                        bd[0] = 6;     // must be <= 9 for lookahead assumptions
                        t     = table;
                        t     = InfTree.inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), blens, bl, bd, tl, td, hufts, z);
                        if (t != (int)ZLibResultCode.Z_OK)
                        {
                            if (t == (int)ZLibResultCode.Z_DATA_ERROR)
                            {
                                blens = null;
                                mode  = InflateBlockMode.BAD;
                            }
                            r = t;

                            BitB       = b; BitK = k;
                            z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                            WritePos   = q;
                            return(inflate_flush(z, r));
                        }

                        codes = new InfCodes(bl[0], bd[0], hufts, tl[0], hufts, td[0], z);
                    }
                    blens = null;
                    mode  = InflateBlockMode.CODES;
                    goto case InflateBlockMode.CODES;

                case InflateBlockMode.CODES:
                    BitB       = b; BitK = k;
                    z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                    WritePos   = q;

                    if ((r = codes.proc(this, z, r)) != (int)ZLibResultCode.Z_STREAM_END)
                    {
                        return(inflate_flush(z, r));
                    }
                    r = (int)ZLibResultCode.Z_OK;
                    codes.free(z);

                    p = z.next_in_index; n = z.avail_in; b = BitB; k = BitK;
                    q = WritePos; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);

                    if (last == 0)
                    {
                        mode = InflateBlockMode.TYPE;
                        break;
                    }
                    mode = InflateBlockMode.DRY;
                    goto case InflateBlockMode.DRY;

                case InflateBlockMode.DRY:
                    WritePos = q;
                    r        = inflate_flush(z, r);
                    q        = WritePos; m = (int)(q < ReadPos ? ReadPos - q - 1 : End - q);
                    if (ReadPos != WritePos)
                    {
                        BitB       = b; BitK = k;
                        z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                        WritePos   = q;
                        return(inflate_flush(z, r));
                    }
                    mode = InflateBlockMode.DONE;
                    goto case InflateBlockMode.DONE;

                case InflateBlockMode.DONE:
                    r = (int)ZLibResultCode.Z_STREAM_END;

                    BitB       = b; BitK = k;
                    z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                    WritePos   = q;
                    return(inflate_flush(z, r));

                case InflateBlockMode.BAD:
                    r = (int)ZLibResultCode.Z_DATA_ERROR;

                    BitB       = b; BitK = k;
                    z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                    WritePos   = q;
                    return(inflate_flush(z, r));


                default:
                    r = (int)ZLibResultCode.Z_STREAM_ERROR;

                    BitB       = b; BitK = k;
                    z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p;
                    WritePos   = q;
                    return(inflate_flush(z, r));
                }
            }
        }