/// <summary> Returns the specified coded code-block, for the specified component, in
		/// the current tile. The first layer to return is indicated by 'fl'. The
		/// number of layers that is returned depends on 'nl' and the amount of
		/// available data.
		/// 
		/// <p>The argument 'fl' is to be used by subsequent calls to this method
		/// for the same code-block. In this way supplemental data can be retrieved
		/// at a later time. The fact that data from more than one layer can be
		/// returned means that several packets from the same code-block, of the
		/// same component, and the same tile, have been concatenated.</p>
		/// 
		/// <p>The returned compressed code-block can have its progressive
		/// attribute set. If this attribute is set it means that more data can be
		/// obtained by subsequent calls to this method (subject to transmission
		/// delays, etc). If the progressive attribute is not set it means that the
		/// returned data is all the data that can be obtained for the specified
		/// code-block.</p>
		/// 
		/// <p>The compressed code-block is uniquely specified by the current tile,
		/// the component (identified by 'c'), the subband (indentified by 'sb')
		/// and the code-block vertical and horizontal indexes 'n' and 'm'.</p>
		/// 
		/// <p>The 'ulx' and 'uly' members of the returned 'DecLyrdCBlk' object
		/// contain the coordinates of the top-left corner of the block, with
		/// respect to the tile, not the subband.</p>
		/// 
		/// </summary>
		/// <param name="c">The index of the component, from 0 to N-1.
		/// 
		/// </param>
		/// <param name="m">The vertical index of the code-block to return, in the
		/// specified subband.
		/// 
		/// </param>
		/// <param name="n">The horizontal index of the code-block to return, in the
		/// specified subband.
		/// 
		/// </param>
		/// <param name="sb">The subband in whic the requested code-block is.
		/// 
		/// </param>
		/// <param name="fl">The first layer to return.
		/// 
		/// </param>
		/// <param name="nl">The number of layers to return, if negative all available
		/// layers are returned, starting at 'fl'.
		/// 
		/// </param>
		/// <param name="ccb">If not null this object is used to return the compressed
		/// code-block. If null a new object is created and returned. If the data
		/// array in ccb is not null then it can be reused to return the compressed
		/// data.
		/// 
		/// </param>
		/// <returns> The compressed code-block, with a certain number of layers
		/// determined by the available data and 'nl'.
		/// 
		/// </returns>
		public override DecLyrdCBlk getCodeBlock(int c, int m, int n, SubbandSyn sb, int fl, int nl, DecLyrdCBlk ccb)
		{
			
			int t = TileIdx;
			CBlkInfo rcb; // requested code-block
			int r = sb.resLvl; // Resolution level
			int s = sb.sbandIdx; // Subband index
			int tpidx;
			int passtype;
			
			// Number of layers
			int numLayers = ((System.Int32) decSpec.nls.getTileDef(t));
			int options = ((System.Int32) decSpec.ecopts.getTileCompVal(t, c));
			if (nl < 0)
			{
				nl = numLayers - fl + 1;
			}
			
			// If the l quit condition is used, Make sure that no layer 
			// after lquit is returned
			if (lQuit != - 1 && fl + nl > lQuit)
			{
				nl = lQuit - fl;
			}
			
			// Check validity of resquested resolution level (according to the
			// "-res" option).
			int maxdl = getSynSubbandTree(t, c).resLvl;
			if (r > targetRes + maxdl - decSpec.dls.Min)
			{
				throw new System.ApplicationException("JJ2000 error: requesting a code-block " + "disallowed by the '-res' option.");
			}
			
			// Check validity of all the arguments
			try
			{
				rcb = cbI[c][r][s][m][n];
				
				if (fl < 1 || fl > numLayers || fl + nl - 1 > numLayers)
				{
					throw new System.ArgumentException();
				}
			}
			catch (System.IndexOutOfRangeException)
			{
				throw new System.ArgumentException("Code-block (t:" + t + ", c:" + c + ", r:" + r + ", s:" + s + ", " + m + "x" + (+ n) + ") not found in codestream");
			}
			catch (System.NullReferenceException)
			{
				throw new System.ArgumentException("Code-block (t:" + t + ", c:" + c + ", r:" + r + ", s:" + s + ", " + m + "x" + n + ") not found in bit stream");
			}
			
			// Create DecLyrdCBlk object if necessary
			if (ccb == null)
			{
				ccb = new DecLyrdCBlk();
			}
			ccb.m = m;
			ccb.n = n;
			ccb.nl = 0;
			ccb.dl = 0;
			ccb.nTrunc = 0;
			
			if (rcb == null)
			{
				// This code-block was skipped when reading. Returns no data
				ccb.skipMSBP = 0;
				ccb.prog = false;
				ccb.w = ccb.h = ccb.ulx = ccb.uly = 0;
				return ccb;
			}
			
			// ccb initialization
			ccb.skipMSBP = rcb.msbSkipped;
			ccb.ulx = rcb.ulx;
			ccb.uly = rcb.uly;
			ccb.w = rcb.w;
			ccb.h = rcb.h;
			ccb.ftpIdx = 0;
			
			// Search for index of first truncation point (first layer where
			// length of data is not zero)
			int l = 0;
			while ((l < rcb.len.Length) && (rcb.len[l] == 0))
			{
				ccb.ftpIdx += rcb.ntp[l];
				l++;
			}
			
			// Calculate total length, number of included layer and number of
			// truncation points
			for (l = fl - 1; l < fl + nl - 1; l++)
			{
				ccb.nl++;
				ccb.dl += rcb.len[l];
				ccb.nTrunc += rcb.ntp[l];
			}
			
			// Calculate number of terminated segments
			int nts;
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0)
			{
				// Regular termination in use One segment per pass
				// (i.e. truncation point)
				nts = ccb.nTrunc - ccb.ftpIdx;
			}
			else if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0)
			{
				// Selective arithmetic coding bypass mode in use, but no regular
				// termination: 1 segment upto the end of the last pass of the 4th
				// most significant bit-plane, and, in each following bit-plane,
				// one segment upto the end of the 2nd pass and one upto the end
				// of the 3rd pass.
				
				if (ccb.nTrunc <= CSJ2K.j2k.entropy.StdEntropyCoderOptions.FIRST_BYPASS_PASS_IDX)
				{
					nts = 1;
				}
				else
				{
					nts = 1;
					// Adds one for each terminated pass
					for (tpidx = ccb.ftpIdx; tpidx < ccb.nTrunc; tpidx++)
					{
						if (tpidx >= CSJ2K.j2k.entropy.StdEntropyCoderOptions.FIRST_BYPASS_PASS_IDX - 1)
						{
							passtype = (tpidx + CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_EMPTY_PASSES_IN_MS_BP) % CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_PASSES;
							if (passtype == 1 || passtype == 2)
							{
								// lazy pass just before MQ pass or MQ pass just
								// before lazy pass => terminated
								nts++;
							}
						}
					}
				}
			}
			else
			{
				// Nothing special in use, just one terminated segment
				nts = 1;
			}
			
			// ccb.data creation
			if (ccb.data == null || ccb.data.Length < ccb.dl)
			{
				ccb.data = new byte[ccb.dl];
			}
			
			// ccb.tsLengths creation
			if (nts > 1 && (ccb.tsLengths == null || ccb.tsLengths.Length < nts))
			{
				ccb.tsLengths = new int[nts];
			}
			else if (nts > 1 && (options & (CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS | CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS)) == CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS)
			{
				ArrayUtil.intArraySet(ccb.tsLengths, 0);
			}
			
			// Fill ccb with compressed data
			int dataIdx = - 1;
			tpidx = ccb.ftpIdx;
			int ctp = ccb.ftpIdx; // Cumulative number of truncation
			// point for the current layer layer
			int tsidx = 0;
			int j;
			
			for (l = fl - 1; l < fl + nl - 1; l++)
			{
				ctp += rcb.ntp[l];
				// No data in this layer
				if (rcb.len[l] == 0)
					continue;
				
				// Read data
				// NOTE: we should never get an EOFException here since all
				// data is checked to be within the file.
				try
				{
					in_Renamed.seek(rcb.off[l]);
					in_Renamed.readFully(ccb.data, dataIdx + 1, rcb.len[l]);
					dataIdx += rcb.len[l];
				}
				catch (System.IO.IOException e)
				{
					JJ2KExceptionHandler.handleException(e);
				}
				
				// Get the terminated segment lengths, if any
				if (nts == 1)
					continue;
				if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0)
				{
					// Regular termination => each pass is terminated
					for (j = 0; tpidx < ctp; j++, tpidx++)
					{
						if (rcb.segLen[l] != null)
						{
							ccb.tsLengths[tsidx++] = rcb.segLen[l][j];
						}
						else
						{
							// Only one terminated segment in packet
							ccb.tsLengths[tsidx++] = rcb.len[l];
						}
					}
				}
				else
				{
					// Lazy coding without regular termination
					for (j = 0; tpidx < ctp; tpidx++)
					{
						if (tpidx >= CSJ2K.j2k.entropy.StdEntropyCoderOptions.FIRST_BYPASS_PASS_IDX - 1)
						{
							passtype = (tpidx + CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_EMPTY_PASSES_IN_MS_BP) % CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_PASSES;
							if (passtype != 0)
							{
								// lazy pass just before MQ pass or MQ
								// pass just before lazy pass =>
								// terminated
								if (rcb.segLen[l] != null)
								{
									ccb.tsLengths[tsidx++] += rcb.segLen[l][j++];
									rcb.len[l] -= rcb.segLen[l][j - 1];
								}
								else
								{
									// Only one terminated segment in packet
									ccb.tsLengths[tsidx++] += rcb.len[l];
									rcb.len[l] = 0;
								}
							}
						}
					}
					
					// Last length in packet always in (either terminated segment
					// or contribution to terminated segment)
					if (rcb.segLen[l] != null && j < rcb.segLen[l].Length)
					{
						ccb.tsLengths[tsidx] += rcb.segLen[l][j];
						rcb.len[l] -= rcb.segLen[l][j];
					}
					else
					{
						// Only one terminated segment in packet
						if (tsidx < nts)
						{
							ccb.tsLengths[tsidx] += rcb.len[l];
							rcb.len[l] = 0;
						}
					}
				}
			}
			if (nts == 1 && ccb.tsLengths != null)
			{
				ccb.tsLengths[0] = ccb.dl;
			}
			
			// Set the progressive flag
			int lastlayer = fl + nl - 1;
			if (lastlayer < numLayers - 1)
			{
				for (l = lastlayer + 1; l < numLayers; l++)
				{
					// It remains data for this code-block in the bit stream
					if (rcb.len[l] != 0)
					{
						ccb.prog = true;
					}
				}
			}
			
			return ccb;
		}
Example #2
0
		/// <summary> Returns the specified code-block in the current tile for the specified
		/// component, as a copy (see below).
		/// 
		/// <P>The returned code-block may be progressive, which is indicated by
		/// the 'progressive' variable of the returned 'DataBlk' object. If a
		/// code-block is progressive it means that in a later request to this
		/// method for the same code-block it is possible to retrieve data which is
		/// a better approximation, since meanwhile more data to decode for the
		/// code-block could have been received. If the code-block is not
		/// progressive then later calls to this method for the same code-block
		/// will return the exact same data values.
		/// 
		/// <P>The data returned by this method is always a copy of the internal
		/// data of this object, if any, and it can be modified "in place" without
		/// any problems after being returned. The 'offset' of the returned data is
		/// 0, and the 'scanw' is the same as the code-block width. See the
		/// 'DataBlk' class.
		/// 
		/// <P>The 'ulx' and 'uly' members of the returned 'DataBlk' object
		/// contain the coordinates of the top-left corner of the block, with
		/// respect to the tile, not the subband.
		/// 
		/// </summary>
		/// <param name="c">The component for which to return the next code-block.
		/// 
		/// </param>
		/// <param name="m">The vertical index of the code-block to return, in the
		/// specified subband.
		/// 
		/// </param>
		/// <param name="n">The horizontal index of the code-block to return, in the
		/// specified subband.
		/// 
		/// </param>
		/// <param name="sb">The subband in which the code-block to return is.
		/// 
		/// </param>
		/// <param name="cblk">If non-null this object will be used to return the new
		/// code-block. If null a new one will be allocated and returned. If the
		/// "data" array of the object is non-null it will be reused, if possible,
		/// to return the data.
		/// 
		/// </param>
		/// <returns> The next code-block in the current tile for component 'n', or
		/// null if all code-blocks for the current tile have been returned.
		/// 
		/// </returns>
		/// <seealso cref="DataBlk">
		/// 
		/// </seealso>
		public override DataBlk getCodeBlock(int c, int m, int n, SubbandSyn sb, DataBlk cblk)
		{
			//long stime = 0L; // Start time for timed sections
			int[] zc_lut; // The ZC lookup table to use
			int[] out_data; // The outupt data buffer
			int npasses; // The number of coding passes to perform
			int curbp; // The current magnitude bit-plane (starts at 30)
			bool error; // Error indicator
			int tslen; // Length of first terminated segment
			int tsidx; // Index of current terminated segment
			ByteInputBuffer in_Renamed = null;
			
			bool isterm;
			
			// Get the code-block to decode
			srcblk = src.getCodeBlock(c, m, n, sb, 1, - 1, srcblk);
			
#if DO_TIMING
			stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif

			// Retrieve options from decSpec
			options = ((System.Int32) decSpec.ecopts.getTileCompVal(tIdx, c));
			
			// Reset state
			ArrayUtil.intArraySet(state, 0);
			
			// Initialize output code-block
			if (cblk == null)
				cblk = new DataBlkInt();
			cblk.progressive = srcblk.prog;
			cblk.ulx = srcblk.ulx;
			cblk.uly = srcblk.uly;
			cblk.w = srcblk.w;
			cblk.h = srcblk.h;
			cblk.offset = 0;
			cblk.scanw = cblk.w;
			out_data = (int[]) cblk.Data;
			
			if (out_data == null || out_data.Length < srcblk.w * srcblk.h)
			{
				out_data = new int[srcblk.w * srcblk.h];
				cblk.Data = out_data;
			}
			else
			{
				// Set data values to 0
				ArrayUtil.intArraySet(out_data, 0);
			}
			
			if (srcblk.nl <= 0 || srcblk.nTrunc <= 0)
			{
				// 0 layers => no data to decode => return all 0s
				return cblk;
			}
			
			// Get the length of the first terminated segment
			tslen = (srcblk.tsLengths == null)?srcblk.dl:srcblk.tsLengths[0];
			tsidx = 0;
			// Initialize for decoding
			npasses = srcblk.nTrunc;
			if (mq == null)
			{
				in_Renamed = new ByteInputBuffer(srcblk.data, 0, tslen);
				mq = new MQDecoder(in_Renamed, NUM_CTXTS, MQ_INIT);
			}
			else
			{
				// We always start by an MQ segment
				mq.nextSegment(srcblk.data, 0, tslen);
				mq.resetCtxts();
			}
			error = false;
			
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0)
			{
				if (bin == null)
				{
					if (in_Renamed == null)
						in_Renamed = mq.ByteInputBuffer;
					bin = new ByteToBitInput(in_Renamed);
				}
			}
			
			// Choose correct ZC lookup table for global orientation
			switch (sb.orientation)
			{
				
				case Subband.WT_ORIENT_HL: 
					zc_lut = ZC_LUT_HL;
					break;
				
				case Subband.WT_ORIENT_LH: 
				case Subband.WT_ORIENT_LL: 
					zc_lut = ZC_LUT_LH;
					break;
				
				case Subband.WT_ORIENT_HH: 
					zc_lut = ZC_LUT_HH;
					break;
				
				default: 
					throw new System.ApplicationException("JJ2000 internal error");
				
			}
			
			// NOTE: we don't currently detect which is the last magnitude
			// bit-plane so that 'isterm' is true for the last pass of it. Doing
			// so would aid marginally in error detection with the predictable
			// error resilient MQ termination. However, determining which is the
			// last magnitude bit-plane is quite hard (due to ROI, quantization,
			// etc.)  and in any case the predictable error resilient termination
			// used without the arithmetic coding bypass and/or regular
			// termination modes is almost useless.
			
			// Loop on bit-planes and passes
			
			curbp = 30 - srcblk.skipMSBP;
			
			// Check for maximum number of bitplanes quit condition
			if (mQuit != - 1 && (mQuit * 3 - 2) < npasses)
			{
				npasses = mQuit * 3 - 2;
			}
			
			// First bit-plane has only the cleanup pass
			if (curbp >= 0 && npasses > 0)
			{
				isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP) >= curbp);
				error = cleanuppass(cblk, mq, curbp, state, zc_lut, isterm);
				npasses--;
				if (!error || !doer)
					curbp--;
			}
			
			// Other bit-planes have the three coding passes
			if (!error || !doer)
			{
				while (curbp >= 0 && npasses > 0)
				{
					
					if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (curbp < 31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP))
					{
						// Use bypass decoding mode (only all bit-planes
						// after the first 4 bit-planes).
						
						// Here starts a new raw segment
						bin.setByteArray(null, - 1, srcblk.tsLengths[++tsidx]);
						isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0;
						error = rawSigProgPass(cblk, bin, curbp, state, isterm);
						npasses--;
						if (npasses <= 0 || (error && doer))
							break;
						
						if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0)
						{
							// Start a new raw segment
							bin.setByteArray(null, - 1, srcblk.tsLengths[++tsidx]);
						}
						isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP > curbp));
						error = rawMagRefPass(cblk, bin, curbp, state, isterm);
					}
					else
					{
						// Do not use bypass decoding mode
						if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0)
						{
							// Here starts a new MQ segment
							mq.nextSegment(null, - 1, srcblk.tsLengths[++tsidx]);
						}
						isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0;
						error = sigProgPass(cblk, mq, curbp, state, zc_lut, isterm);
						npasses--;
						if (npasses <= 0 || (error && doer))
							break;
						
						if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0)
						{
							// Here starts a new MQ segment
							mq.nextSegment(null, - 1, srcblk.tsLengths[++tsidx]);
						}
						isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP > curbp));
						error = magRefPass(cblk, mq, curbp, state, isterm);
					}
					
					npasses--;
					if (npasses <= 0 || (error && doer))
						break;
					
					if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (curbp < 31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP)))
					{
						// Here starts a new MQ segment
						mq.nextSegment(null, - 1, srcblk.tsLengths[++tsidx]);
					}
					isterm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - srcblk.skipMSBP) >= curbp);
					error = cleanuppass(cblk, mq, curbp, state, zc_lut, isterm);
					npasses--;
					if (error && doer)
						break;
					// Goto next bit-plane
					curbp--;
				}
			}
			
			// If an error ocurred conceal it
			if (error && doer)
			{
				if (verber)
				{
					FacilityManager.getMsgLogger().printmsg(CSJ2K.j2k.util.MsgLogger_Fields.WARNING, "Error detected at bit-plane " + curbp + " in code-block (" + m + "," + n + "), sb_idx " + sb.sbandIdx + ", res. level " + sb.resLvl + ". Concealing...");
				}
				conceal(cblk, curbp);
			}
			
#if DO_TIMING
			time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif
			
			// Return decoded block
			return cblk;
		}