} // SMS /// <summary> /// This is the divide-and-conquer implementation of the longes common-subsequence (LCS) /// algorithm. /// The published algorithm passes recursively parts of the A and B sequences. /// To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant. /// </summary> /// <param name="dataA">sequence A</param> /// <param name="lowerA">lower bound of the actual range in DataA</param> /// <param name="upperA">upper bound of the actual range in DataA (exclusive)</param> /// <param name="dataB">sequence B</param> /// <param name="lowerB">lower bound of the actual range in DataB</param> /// <param name="upperB">upper bound of the actual range in DataB (exclusive)</param> /// <param name="downVector">a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.</param> /// <param name="upVector">a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.</param> private static void Lcs<T>(DiffData<T> dataA, int lowerA, int upperA, DiffData<T> dataB, int lowerB, int upperB, int[] downVector, int[] upVector) where T : IComparable { // Debug.Write(2, "LCS", String.Format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // Fast walkthrough equal lines at the start while (lowerA < upperA && lowerB < upperB && dataA.Data[lowerA].CompareTo(dataB.Data[lowerB]) == 0) { lowerA++; lowerB++; } // Fast walkthrough equal lines at the end while (lowerA < upperA && lowerB < upperB && dataA.Data[upperA - 1].CompareTo(dataB.Data[upperB - 1]) == 0) { --upperA; --upperB; } if (lowerA == upperA) { // mark as inserted lines. while (lowerB < upperB) dataB.Modified[lowerB++] = true; } else if (lowerB == upperB) { // mark as deleted lines. while (lowerA < upperA) dataA.Modified[lowerA++] = true; } else { // Find the middle snakea and length of an optimal path for A and B Smsrd smsrd = Sms(dataA, lowerA, upperA, dataB, lowerB, upperB, downVector, upVector); // Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y)); // The path is from LowerX to (x,y) and (x,y) to UpperX Lcs(dataA, lowerA, smsrd.X, dataB, lowerB, smsrd.Y, downVector, upVector); Lcs(dataA, smsrd.X, upperA, dataB, smsrd.Y, upperB, downVector, upVector); // 2002.09.20: no need for 2 points } } // LCS()
/// <summary> /// If a sequence of modified lines starts with a line that contains the same content /// as the line that appends the changes, the difference sequence is modified so that the /// appended line and not the starting line is marked as modified. /// This leads to more readable diff sequences when comparing text files. /// </summary> /// <param name="data">A Diff data buffer containing the identified changes.</param> private static void Optimize<T>(DiffData<T> data) where T : IComparable { int startPos, endPos; startPos = 0; while (startPos < data.Length) { while ((startPos < data.Length) && (!data.Modified[startPos])) startPos++; endPos = startPos; while ((endPos < data.Length) && (data.Modified[endPos])) endPos++; if ((endPos < data.Length) && (data.Data[startPos].CompareTo(data.Data[endPos]) == 0)) { data.Modified[startPos] = false; data.Modified[endPos] = true; } else { startPos = endPos; } // if } // while } // Optimize
} // Diff /// <summary> /// This is the algorithm to find the Shortest Middle Snake (SMS). /// </summary> /// <param name="dataA">sequence A</param> /// <param name="lowerA">lower bound of the actual range in DataA</param> /// <param name="upperA">upper bound of the actual range in DataA (exclusive)</param> /// <param name="dataB">sequence B</param> /// <param name="lowerB">lower bound of the actual range in DataB</param> /// <param name="upperB">upper bound of the actual range in DataB (exclusive)</param> /// <param name="downVector">a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.</param> /// <param name="upVector">a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.</param> /// <returns>a MiddleSnakeData record containing x,y and u,v</returns> private static Smsrd Sms<T>(DiffData<T> dataA, int lowerA, int upperA, DiffData<T> dataB, int lowerB, int upperB, int[] downVector, int[] upVector) where T : IComparable { Smsrd ret; int max = dataA.Length + dataB.Length + 1; int downK = lowerA - lowerB; // the k-line to start the forward search int upK = upperA - upperB; // the k-line to start the reverse search int delta = (upperA - lowerA) - (upperB - lowerB); bool oddDelta = (delta & 1) != 0; // The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based // and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor int downOffset = max - downK; int upOffset = max - upK; int maxD = ((upperA - lowerA + upperB - lowerB) / 2) + 1; // Debug.Write(2, "SMS", String.Format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // init vectors downVector[downOffset + downK + 1] = lowerA; upVector[upOffset + upK - 1] = upperA; for (int d = 0; d <= maxD; d++) { // Extend the forward path. for (int k = downK - d; k <= downK + d; k += 2) { // Debug.Write(0, "SMS", "extend forward path " + k.ToString()); // find the only or better starting point int x, y; if (k == downK - d) { x = downVector[downOffset + k + 1]; // down } else { x = downVector[downOffset + k - 1] + 1; // a step to the right if ((k < downK + d) && (downVector[downOffset + k + 1] >= x)) x = downVector[downOffset + k + 1]; // down } y = x - k; // find the end of the furthest reaching forward D-path in diagonal k. while ((x < upperA) && (y < upperB) && (dataA.Data[x].CompareTo(dataB.Data[y]) == 0)) { x++; y++; } downVector[downOffset + k] = x; // overlap ? if (oddDelta && (upK - d < k) && (k < upK + d)) { if (upVector[upOffset + k] <= downVector[downOffset + k]) { ret.X = downVector[downOffset + k]; ret.Y = downVector[downOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k // Extend the reverse path. for (int k = upK - d; k <= upK + d; k += 2) { // Debug.Write(0, "SMS", "extend reverse path " + k.ToString()); // find the only or better starting point int x, y; if (k == upK + d) { x = upVector[upOffset + k - 1]; // up } else { x = upVector[upOffset + k + 1] - 1; // left if ((k > upK - d) && (upVector[upOffset + k - 1] < x)) x = upVector[upOffset + k - 1]; // up } // if y = x - k; while ((x > lowerA) && (y > lowerB) && (dataA.Data[x - 1].CompareTo(dataB.Data[y - 1]) == 0)) { x--; y--; // diagonal } upVector[upOffset + k] = x; // overlap ? if (!oddDelta && (downK - d <= k) && (k <= downK + d)) { if (upVector[upOffset + k] <= downVector[downOffset + k]) { ret.X = downVector[downOffset + k]; ret.Y = downVector[downOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k } // for D throw new ApplicationException("the algorithm should never come here."); } // SMS