Example #1
0
        C.Function create_capsule_layer(C.Function inputs, int num_capsule, int dim_capsule, int routings, string name)
        {
            var inputs_shape      = inputs.Output.Shape.Dimensions;
            var input_num_capsule = inputs_shape[0];
            var input_dim_capsule = inputs_shape[1];
            var W = new C.Parameter(
                new int[] { num_capsule, dim_capsule, input_num_capsule, input_dim_capsule },
                C.DataType.Float,
                CC.GlorotUniformInitializer(),
                computeDevice,
                name: "W");

            inputs = CC.Reshape(inputs, new int[] { 1, 1, input_num_capsule, input_dim_capsule }); // [1, 1, 1152, 8])
            var inputs_hat = CC.ElementTimes(W, inputs);

            inputs_hat = CC.ReduceSum(inputs_hat, new C.Axis(3));
            inputs_hat = CC.Squeeze(inputs_hat);

            C.Function outputs = null;
            var        zeros   = new C.Constant(new int[] { num_capsule, 1, input_num_capsule }, C.DataType.Float, 0, computeDevice);
            var        b       = CC.Combine(new C.VariableVector()
            {
                zeros
            });

            for (int i = 0; i < routings; i++)
            {
                var c = CC.Softmax(b, new C.Axis(0));
                var batch_dot_result = CC.ElementTimes(c, inputs_hat);
                batch_dot_result = CC.ReduceSum(batch_dot_result, new C.Axis(2));
                batch_dot_result = CC.Squeeze(batch_dot_result);
                outputs          = squash(batch_dot_result, name: $"squashed_{i}", axis: 1);
                if (i < (routings - 1))
                {
                    outputs          = CC.Reshape(outputs, new int[] { num_capsule, dim_capsule, 1 });
                    batch_dot_result = CC.ElementTimes(outputs, inputs_hat);
                    batch_dot_result = CC.ReduceSum(batch_dot_result, new C.Axis(1));
                    b = CC.Plus(b, batch_dot_result);
                }
            }
            outputs = CC.Combine(new C.VariableVector()
            {
                outputs
            }, name);
            return(outputs);
        }
Example #2
0
        /// <summary>
        /// Batch normalization layer (Ioffe and Szegedy, 2014). Normalize the activations of the previous layer at each batch, i.e.applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.
        /// </summary>
        /// <param name="layer">The output of the last layer.</param>
        /// <param name="epsilon">Small float added to variance to avoid dividing by zero.</param>
        /// <param name="betaInitializer">Initializer for the beta weight.</param>
        /// <param name="gammaInitializers">Initializer for the gamma weight.</param>
        /// <param name="runningMeanInitializer">Initializer for the running mean weight.</param>
        /// <param name="runningStdInvInitializer">Initializer for the running standard inv weight.</param>
        /// <param name="spatial">Boolean, if yes the input data is spatial (2D). If not, then sets to 1D</param>
        /// <param name="normalizationTimeConstant">The time constant in samples of the first-order low-pass filter that is used to compute mean/variance statistics for use in inference</param>
        /// <param name="blendTimeConst">The blend time constant in samples.</param>
        /// <returns></returns>
        public static Function BatchNorm(Variable layer, float epsilon      = 0.001f, Initializer betaInitializer        = null, Initializer gammaInitializers = null,
                                         Initializer runningMeanInitializer = null, Initializer runningStdInvInitializer = null, bool spatial                  = true,
                                         float normalizationTimeConstant    = 4096f, float blendTimeConst = 0.0f)
        {
            betaInitializer          = betaInitializer ?? new Zeros();
            gammaInitializers        = gammaInitializers ?? new Zeros();
            runningMeanInitializer   = runningMeanInitializer ?? new Zeros();
            runningStdInvInitializer = runningStdInvInitializer ?? new Zeros();

            var  biasParams    = new Parameter(new int[] { NDShape.InferredDimension }, DataType.Float, betaInitializer.Get(), GlobalParameters.Device, "");
            var  scaleParams   = new Parameter(new int[] { NDShape.InferredDimension }, DataType.Float, gammaInitializers.Get(), GlobalParameters.Device, "");
            var  runningMean   = new Parameter(new int[] { NDShape.InferredDimension }, DataType.Float, runningMeanInitializer.Get(), GlobalParameters.Device, "");
            var  runningInvStd = new CNTK.Constant(new int[] { NDShape.InferredDimension }, 0.0f, GlobalParameters.Device);
            var  runningCount  = CNTK.Constant.Scalar(0.0f, GlobalParameters.Device);
            bool useCudnn      = false;

            if (GlobalParameters.Device.Type == DeviceKind.GPU)
            {
                useCudnn = true;
            }

            return(CNTKLib.BatchNormalization(layer, scaleParams, biasParams, runningMean, runningInvStd, runningCount, spatial, normalizationTimeConstant, blendTimeConst, epsilon, useCudnn));
        }
Example #3
0
 internal Constant(CNTK.Constant constant) : base(constant)
 {
     UnderlyingConstant = constant;
 }